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• Understanding the universe is one of our 

greatest dreams.

• Quantum gravity is another great dream.

• In January 2009, Horava proposed a power-

counting renormalizable theory of gravitation.

• Why don’t we apply Horava’s theory to 

cosmology?

The Cosmic Uroboros by 

Sheldon Glashow



Horava-Lifshitz cosmology

• Higher curvature terms lead to regular bounce
(Calcagni 2009, Brandenberger 2009).

• Higher curvature terms (1/a6, 1/a4) might make the 
flatness problem milder (Kiritsis&Kofinas 2009).

• The z=3 scaling solves the horizon problem and 
leads to scale-invariant cosmological perturbations
without inflation (Mukohyama 2009).

• Absence of local Hamiltonian constraint leads to 
CDM as integration “constant” (Mukohyama 2009).

• New mechanism for generation of primordial 
magnetic seed field (Maeda, Mukohyama, 
Shiromizu 2009).



Contents of this talk

• Basics of Horava-Lifshitz gravity

• Generation of scale-invariant 

cosmological perturbation

• Dark matter as integration “constant”

• Comments on scalar graviton

• Non-Gaussianity



Power counting

• Scaling dim of f
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• Renormalizability

• Gravity is highly non-

linear and thus non-

renormalizable



Abandon Lorentz symmetry?

3 2I dtdx f 
• Anisotropic scaling
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• For z = 3, any 

nonlinear 

interactions are 

renormalizable!

• Gravity becomes 

renormalizable!?



Scalar with z=3 

UV: z=3 IR: z=1
• UV: z=3 , renormalizable nonlinear theory

RG flow

• IR: z=1 , familiar Lorentz invariant theory
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free part

Note: we need a mechanism or symmetry to make “limits of 

speed” of different species to be essentially the same. 

c.f. Iengo, Russo, and Serone (2009)

dc = 0 is an IR fixed point but approach seems slow.

Perhaps, embedding into an unified theory is necessary. 

FERMI, MAGIC

 M>1011GeV

for photon



Scale-invariant cosmological 

perturbations from Horava-

Lifshitz gravity without inflation

arXiv:0904.2190 [hep-th]

c.f. Basic mechanism is common for “Primordial magnetic field from non-

inflationary cosmic expansion in Horava-Lifshitz gravity”, arXiv:0909.2149

[astro-th.CO] with S.Maeda and T.Shiromizu.



Usual story with z=1

• w2 >> H2 : oscillate

w2 << H2 : freeze
oscillation  freeze-out  iff d(H2/ w2)/t > 0
w2 =k2/a2 leads to d2a/dt2 > 0
Generation of super-horizon fluctuations requires 
accelerated expansion, i.e. inflation.

• Scaling law 
t   b t  (E  b-1E)
x  b x
f b-1 f
Scale-invariance requires almost const. H, i.e. 
inflation.

~E Hdf 



UV fixed point with z=3

• oscillation  freeze-out  iff d(H2/ w2)/t > 0

w2 =M-4k6/a6 leads to d2(a3)/dt2 > 0

OK for a~tp with p > 1/3

• Scaling law 

t   b3 t  (E  b-3E)

x  b x

f b0 f

Scale-invariant fluctuations!

0 0~E Hdf 



ln L

ln a
H >> M H << M

Horizon exit and re-entry

pa t
1/3 < p < 1



ln L

ln a
H >> M H << M

Horizon exit and re-entry

pa t
1/3 < p < 1



GOING BACK TO 

HORAVA„S IDEA



Horava-Lifshitz gravity

• Basic quantities:
lapse N(t), shift Ni(t,x), 3d spatial metric gij(t,x)

• ADM metric (emergent in the IR)
ds2 = -N2dt2 + gij (dxi + Nidt)(dxj + Njdt)

• Foliation-preserving deffeomorphism
t  t’(t),   xi

 x’i(t,xj)

• Anisotropic scaling with z=3 in UV
t  bz t,   xi

 b xi

• Ingredients in the action

Horava (2009)

 
1

2
ij t ij i j j iK g D N D N

N
   

Ndt 3gd x ijg
ijR

iD
( Cijkl = 0 in 3d )



UV action with z=3

• Kinetic terms (2nd time derivative)

c.f.  l = 1 for GR

• z=3 potential terms (6th spatial derivative)

c.f. DiRjkD
jRki is written in terms of other terms

 3 2ij
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Relevant deformations (with parity)

• z=2 potential terms (4th spatial derivative)

• z=1 potential term (2nd spatial derivative)

• z=0 potential term (no derivative)

3Ndt gd x
2R

j i

i jR R

3Ndt gd x
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• UV: z=3 , power-counting renormalizability

RG flow

• IR: z=1 , seems to recover GR iff l 1

note: 

Renormalizability has not been proved.

RG flow has not yet been investigated.

IR potential
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IR action with z=1

kinetic term



Projectability condition
• Infinitesimal tr. dt = f(t), dxi = zi(t,xj)

• Space-independent N cannot be transformed to 

space-dependent N.

• N is gauge d.o.f. associated with the space-

independent time reparametrization.

• It is natural to restrict N to be space-independent.

• Consequently, Hamiltonian constraint is an 

equation integrated over a whole space.
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Note
• Imposing local Hamiltonian constraint would 

result in theoretical inconsistencies and 

phenomenological obstacles.

• “Strong coupling in Horava gravity”

by C.Charmousis, et.al., arXiv:0905.2579

“A trouble with Horava-Lifshitz gravity”

by M.Li and Y.Pang, arXiv:0905.2751

“A dynamical inconsistency of Horava gravity”

by M.Henneaux, et.al., arXiv:0912.0399

• Those problems disappear once we notice that 

there is no local Hamiltonian constraint.

(c.f. section 5 of arXiv:0905.3563)



Dark matter as integration constant 

in Horava-Lifshitz gravity

arXiv:0905.3563 [hep-th]

See also arXiv:0906.5069 [hep-th]

Caustic avoidance in Horava-Lifshitz gravity



Structure of GR

• 4D diffeomorphism  

4 constraints = 1 Hamiltonian + 3 momentum

@ each time @ each point

• Constraints are preserved by dynamical 

equations.

• We can solve dynamical equations, provided 

that constraints are satisfied at initial time.



FRW spacetime in GR
• ds2 = - dt2 + a2(t) (dx2 + dy2 + dz2)

• Approximates overall behavior of our patch 

of the universe inside the Hubble horizon.

• Hamiltonian constraint

 Friedmann eq 

E.o.m. of matter

 conservation eq.

• Dynamical eq 

is not independent

but follows from the above n+1 eqs.



Structure of HL gravity

• Foliation-preserving diffeomorphism

= 3D spatial diffeomorphism

+ space-independent time reparametrization

• 3 local constraints + 1 global constraint

= 3 momentum  @ each time @ each point

+ 1 Hamiltonian @ each time      integrated

• Constraints are preserved by dynamical 

equations.

• We can solve dynamical equations, provided 

that constraints are satisfied at initial time.



FRW spacetime in HL gravity
• Approximates overall behavior of our patch 

of the universe inside the Hubble horizon.

• No “local” Hamiltonian constraint

E.o.m. of matter

 conservation eq.

• Dynamical eq

can be integrated to give

Friedmann eq with

“dark matter as

integration constant”



IR limit of HL gravity

• Looks like GR iff l = 1. So, we assume that 

l = 1 is an IR fixed point of RG flow.

• Global Hamiltonian constraint

• Momentum constraint & dynamical eq
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Dark matter as integration constant

• Def. THL
mn

• General solution to the momentum 

constraint and dynamical eq.

• Global Hamiltonian constraint

rHL can be positive everywhere in our 

patch of the universe inside the horizon.

• Bianchi identity  (non-)conservation eq



Dark matter as integration constant

• Def. THL
mn

• General solution to the momentum 

constraint and dynamical eq.

• Global Hamiltonian constraint

rHL can be positive everywhere in our 

patch of the universe inside the horizon.

• Bianchi identity  (non-)conservation eq

GR is NOT recovered

but GR+CDM is!



Dark matter as integration constant

• Def. THL
mn

• General solution to the momentum 

constraint and dynamical eq.

• Global Hamiltonian constraint

rHL can be positive everywhere in our 

patch of the universe inside the horizon.

• Bianchi identity  (non-)conservation eq

GR is NOT recovered

but GR+CDM is!

Indeed, one can prove that

there is no exactly static

star: “CDM” accretes!
[K.Izumi and S.Mukohyama]



Micro to Macro
• Overall behavior of smooth THL

mn = rHLnmnn is like 

pressureless dust.

• Microscopic lumps (sequences of caustics & 

bounces) of rHL can collide and bounce. (cf. early 

universe bounce [Calcagni 2009, Brandenberger 

2009]) If asymptotically free, would-be caustics 

does not gravitate too much.

• Group of microscopic lumps with collisions and 

bounces When coarse-grained, can it mimic a 

cluster of particles with velocity dispersion?

• Dispersion relation of matter fields defined in the 

rest frame of “dark matter” 

 Any astrophysical implications?



Summary so far
• The z=3 scaling solves horizon problem and leads to

scale-invariant cosmological perturbations for a~tp

with p>1/3.

• The lack of local Hamiltonian constraint may explain 

“dark matter” without dark matter. GR is NOT 

recovered: constraint algebra is smaller than GR 

since the time slicing and the “dark matter” rest 

frame are synchronized in the theory level. 

The rest of this talk

• Comments on scalar graviton

• Non-Gaussianity



Propagating d.o.f.
• Minkowski + perturbation

N = 1, Ni = 0, gij = dij + hij

• Residual guage freedom = 

time-independent spatial diffeo.

• Momentum constraint

• Fix the residual guage freedom by setting

at some fixed time surface.

• Decompose Hij into trace and traceless parts

TT part      : 2 d.o.f. (usual tensor graviton)

Trace part : 1 d.o.f. (scalar graviton)

0i ijH 

0t i ijH   ij ij ijH h hl d 



Scalar graviton and l 1

• In the limit l 1, the scalar graviton H 
becomes pure gauge. So, it decouples.

• However, its kinetic term will vanish

and H gets strongly self-coupled.

• This is not a problem in renormalizable 
theories if there is “Vainshtein effect”, i.e. 
decoupling of the strongly-coupled sector from 
the rest of the world. 
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Linear instability of scalar graviton

• Sign of (time) kinetic term (l-1)/(3l-1) > 0.

• The dispersion relation in flat background

w2 = k2 x [cs
2 + O(k2/M2)] with cs

2 =-(l-1)/(3l-1)<0

 IR instability in linear level

(Wang&Maartens; Blas,et.al.; Koyama&Arroja 2009)

• Slower than Jeans instability of “DM as integration const” if

tJ~(GNr)-1/2 < tL~L/|cs| . 

• Tamed by Hubble friction or/and O(k2/M2) terms if 

H-1 < tL or/and L < 1/(|cs|M).

• Thus, the linear instability does not show up if

|cs| < Max [|F|1/2,HL,1/(ML)]. (F~-GNrL2)

L>0.01mm  (Shorter scales  similar to spacetime foam)

• Phenomenological constraint on properties of RG flow.

Appendix C of arXiv:0911.1814 with K.Izumi



Non-Gaussianity

work in progress

(~ 1 week old)



Bispectrum of z=3 scalar
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Order estimate
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Power spectrum

Bispectrum
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B P  

After conversion to curvature perturbation

Strong constraint on , perhaps

requiring asymptotic freedom of the theory.

Totally independent of

background  evolution!



Shape of bispectrum
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Other models

Equilateral

DBI inflation

ghost inflation

Squeezed

multi-field slow-roll

curvaton, etc.



Summary

• Horava-Lifshitz gravity is power-counting renormalizable 
and can be a candidate theory of quantum gravity.

• While there are many fundamental issues to be addressed, 
it is interesting to investigate cosmological implications. 

• The z=3 scaling solves horizon problem and leads to scale-
invariant cosmological perturbations for a~tp with p>1/3.

• HL gravity does NOT recover GR at low-E but can instead 
mimic GR+CDM: “dark matter as an integral constant”. 
Constraint algebra is smaller than GR since the time slicing 
and the “dark matter” rest frame are synchronized. 

• Large non-Gaussianity is expected, perhaps requiring 
asymptotic freedom, if cosmological perturbation is 
produced during the z=3 regime. The shape (elongated-
triangle + shape-invariant) of bispectrum is distinguishable 
from other models.



Future works

• Renormalizability beyond power-counting

• RG flow: is l = 1 an IR fixed point ? Does it satisfy 
the stability condition for the scalar graviton?
( |cs| < Max [|F|1/2,HL,1/(ML)] for L>0.01mm)

• Embedding into an unified theory : can we get a 
common “limit of speed” ?

• Is there Vainshtein effect? [with K.Izumi]

• Micro & macro behavior of “CDM”

• Adiabatic initial condition for “CDM” from the z=3 
scaling

• Spectral tilt from anomalous dimension

• …





Backup slides



Black holes with N=N(t)?
• Schwarzschild BH in PG coordinate

• Gaussian normal coordinate

Lemaitre reference frame

Doran coordinate
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exact sol

for l = 1

approx sol

for l = 1



A free scalar field (I)

UV: z=3 IR: z=1

FRW background with H >> M
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A free scalar field (II)

Normalized mode function

converges

for

initially oscillates and freezes @ w2~H2

independent of H and scale-invariant!

Power spectrum

k
f



General case
• General solution to the momentum 

constraint and dynamical eq.

• Global Hamiltonian constraint

• Bianchi identity  (non-)conservation eq

 initial condition of “dark matter”



Four versions of HL gravity

• There are at least four versions of the theory: w/wo 

detailed balance & w/wo projectability.

• Only the version without the detailed balance 

condition with the projectability condition has a 

potential to be theoretically consistent and 

cosmologically viable. 

• Horava’s original proposal was with the 

projectability condition and with/without the detailed 

balance condition.

• There is an attempt to extend the non-projectable 

theory by introducing ai = (ln N),i [Blas, Pujolas and 

Sibiryakov 2009].



“On the extra mode and inconsistency of Horava 

gravity”, by Blas, Pujolas and Sibiryakov, 

arXiv:0906.3046

• This paper has three statements about the projectable 
version: (i) Formation of caustics without taking into 
account backreaction of higher curvature terms to 
geometry; (ii) Relation to ghost condensate without
taking into account difference in symmetries; (iii) Low 
strong-coupling scale of their low-E EFT away from
l=1. This does not imply breakdown of the underlining 
UV theory. (See “note added” in arXiv:0906.5069.)

• Contrary to (iii), we know that the scalar graviton gets 
strongly coupled only at l=1. This is not a problem if 
there is “Vainstein effect” and if the theory is 
renormalizable.



Stellar center is dynamical in 

Horava-Lifshitz gravity

arXiv:0911.1814 [hep-th]
with K.Izumi



Black holes and stars

• Schwarzschild geometry in PG coordinate (N=1) is 
locally an exact solution with l = 1.

• Kerr geometry in Doran coordinate (N=1,Ni=0) is 
locally an approximate solution with l = 1.

• Those solutions are “black” for low-E probes but not 
“black” for high-E probes. Visible singularity?

• Extrinsic curvature diverges at the center of those 
solutions  UV effects such as deviation of l from 1 
 Do UV effects resolve BH singularity?

• To answer this question, we probably need to evolve 
a regular initial data towards BH formation.

• As a first step, let us consider stellar solutions.



Basic setup

•The energy density r is a piecewise-continuous 

non-negative function of the pressure P.

•The central pressure Pc is positive.



No static star solution
• Momentum conservation equation

• Global-staticity  1-b2 > 0 everywhere.

• Regularity of Kx
x b’ is finite  P’ is also 

finite  b(x) and P(x) are continuous 
r(x)+P(x) is piecewise-continuous.

• Pc>0 & P continuous & r non-negative 
r+P>0 in a neighborhood of the center.

• Define x0 as the minimal value for which at 
least one of 



• L.h.s. is non-positive  bc=0 & rc’=1 

regularity of R & Kq
q

• R.h.s. is positive  P0 is non-positive  r is 

non-negative & at least one of 

is non-positive & P(x) is continuous

• Contradiction!  no spherically-symmetric 

globally-static solutions stellar center is 

dynamical

• The proof is insensitive to the structure of 

higher-derivative terms valid for any z



• L.h.s. is non-positive  bc=0 & rc’=1 

regularity of R & Kq
q

• R.h.s. is positive  P0 is non-positive  r is 

non-negative & at least one of 

is non-positive & P(x) is continuous

• Contradiction!  no spherically-symmetric 

globally-static solutions stellar center is 

dynamical

• The proof is insensitive to the structure of 

higher-derivative terms valid for any z

The proof supports 

“DM as integration constant”: 

“DM” accreates toward a star and 

makes stellar center dynamical


