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planar N=4 SYM = tree-level AdS5 x S° string

solve 4d CFT = solve string theory C 2d CFT

(1) spectrum of dimensions of primary operators

(1) 3-point correlators

spectrum 1s determined by integrability (Kazakov’s talk)
3-point functions not (?) controlled by integrability

(cf. flat-space string theory)

what 1s known about 3-point functions?

e 1/2 BPS operators = massless AdS5 x S° string modes
(IIB supergravity fields)
3-point functions (like dimensions) are protected
Crigegs = vV 123
[Lee, Minwalla, Rangamani, Seiberg 98, ....]
general arguments for protection ...
e correlators involving non-BPS operators (massive string modes)



weak coupling :

direct 1-loop computations

Cras = CY3(L+ A0 cami” + )
An:An(O)+7n7 ’Yn—)‘fy()+)‘2 ()

[Bianchi, Kovacs, Rossi, Stanev 01;

Okuyuama, Tseng 04; Grosardt, Plefka 10]

may also use perturbed spin chain Hamiltonian to
compute some correlation functions [Roiban, Volovich 04]

strong coupling: little 1s known
[some earlier studies in near-BMN limit are inconclusive]
if, e.g., conjecture exponentiation (eXpZi:1 cnYn) then

eV behaviour at strong coupling for operators

with large quantum numbers A ~ S ~ /)

can be captured by semiclassical approximation

as for 2-point functions ?

[Janik, Surowka, Wereszczynski 10; Buchbinder, AT 10]



special case:

two “heavy” operators with Aj 5 ~ VA

one “light” operator A; < v/ \:

correlator saturated by semiclassical trajectory
determined by “heavy” states

e “light” state 1s BPS:

K. Zarembo, 1008.1059;

M.S. Costa, R. Monteiro, J.E. Santos, D. Zoakos, 1008.1070
e “light” state 1s non-BPS:

R. Roiban, A.T., 1008.4921

Lessons ?
Extension of similar semiclassical approach to
special 4-point functions with non-BPS states ?



Planar N=4 SYM — AdS5 x S° string duality:

4d CFT vs 2d CFT

planar correlators of single-tr conformal primary ops in SYM
= correlators of closed-string vertex ops on 2-sphere

equality of generating functionals

<6<I>-O>4d _ <e<I>-V>2d

O = primary SYM operator of dimension A
V' = corresponding marginal string vertex operator

¢ -0 = /d4a?’ O (2")O(x")
¢.V = /d4x’ Q2" V(a2 ...)

V = /d2§ V&, z,..)



Poincare patch: ds? = 272(dz? + dx™dx,,)
symbolic structure of vertex operators
V=K0X0X +...)
K(x—1'52)=clz+ 2z (x — )] -8

K(x—a'52),00=06W(x—2)



2-point and 3-point correlators special:
x-dependence fixed by 4d conf. invariance

5A1,A2
(V1(x)Va(x"))4a = x— /P50

(V1(x)Va(x')V3(x"))4d

Clo3

— ‘X _ X/‘Al—f—Ag—Ag |X _ X//|A1—|—A3—A2 ’X/ _ X//‘AQ—FAg—Al
Similar relations for correlators of O’s corresponding V'’s

Problems :
e compute the spectrum, i.e. functions A(\, Q)

A = g2y N, string tension T = %
Q = (51,99, J1, J2, J3; ..., ...) — charges characterizing Oa

e compute Ca3(\, Q1,Q2,Q3)

higher-point correlators — via OPE



General 1dea of semiclassical approach:

V ~ ()A()Q
so if A and the charges () scale as ' = 2_?
they produce terms in

>

(V.V) = /[da:] V.V exp(—T/d2§ 0X0X + ...)

of same order as string action —

VA > 1 limit is dominated by classical trajectory

with vertex operators providing “source terms”

— may lead to a prediction for strong-coupling behaviour
of corresponding gauge theory correlators

similar idea for 2-point functions [Polyakov 02; A.T. 03]
and correlators with Wilson loops [Zarembo 02; Tsuji 06]



Consider

Kn,m — <VH1 (Xl)---VHn (Xn) VL1 (Xn—i—l)---VLm (Xn—i—m)>

Vi — “heavy” (“semiclassical”) with Ag ~ Q) ~ V> 1
Vi, —“light” (or “quantum”) with () ~ 1

and A, ~ v/ )\ for massive string states

or Ay, ~ 1 for “massless” (BPS) string states

may expect that for large v/\ leading contribution

given by semiclassical string trajectory determined

by the “heavy” operator insertions

Strategy:

(1) construct classical solution that determines

large v/ contribution to K,, = (Vi (x1)...Viy, (x,))
(11) compute K,, ,, by evaluating

Vi, (Xn+1)---VL. (Xn+m ) on that classical solution

motivation:; contribution of “source” terms from
“light” operators are subleading at v/ > 1



3-point functions:

semiclassical trajectory controlling A > 1 limit of

(Vir, (x1) Vi, (x2) Vi, (x3))

not known [cf. Janik et al, 10] (talk by Romuald Janik)
but can use semiclassical trajectory for (Vi (x1)Va, (x2))
[A.T. 03, Buchbinder, A.T. 10]

to compute leading contribution to

Vi, (x1) Vi, (x2)VL(x3))

Examples with V corresponding to some
semiclassical string states with large spin in S° and

e V/; as chiral primary scalar BPS state [Zarembo, 10]
e V1 as dilaton [Costa et al 10] (talk by Miguel Costa)

Our work [Roiban, A.T. 10]:

(1) more general choices of Vi:

twist operators or “small” strings dual to “short” operators
(1) cases when V7, represents massive string modes



Examples of string vertex operators

VA

T 4m

I 4% (9Yn Y M + 9XDX), + fermions |

Yy Y™ =-Y2 - Y2+ Y2+ Y2+ Y2 +Y72=-1

Xp Xpe=Xi+..+X5=1

V =V(Y, X, ) — highest weight states of SO(2,4) x SO(6)
particular linear combinations of products of Y, X

and derivatives that are dim 2 eigenvectors of 2d anom dim op
leading v/\ > 1: ignore fermions and o’ ~ % terms in V'’s

global and Poincaré coordinates in AdS5

Ys 4+ iYy = cosh p e’ Y1 +iYs = sinh p cos @ €' |
Y3 4+ iY,; = sinh p sin§ e'?2 Y, = Lm ’
2
1 1
Yi=—(—1+2°+2"2, Y= — (1422422,
4 Qz( + 25+ 2" x,), 5 2z( + 274+ z"xy),

SO(2,4) rep labelled by SO(2)x SO(2)xSO(2) Cartans (E, 51, .S2)
wave function or a vertex op for state with AdS energy F



should contain a factor (Y5 + iYy) ™% = (cosh p) =& e~ t&?
or if labelled by SO(1,1): (Y5 + Yy)~2
Euclidean continuation:

te=1t, Ype=1Yy, Toe=1x0,

SO(2,4) = SO(1,5), Yo. < Ya, E & A,
(Ys+iYy) P =Y 2, Y,=Y;+Y,

K(z,2) = ka (Y0) ™2 =ka (242 12"2,,) "
K(z,z = 0) = 6% ()

solution of scalar Laplace eq in AdS5 with mass m? = A(A —4)
unintegrated vertex operator

Ve (YD) ™2 (0Y) .. (0mX)"=(YL) S U, X, ..

integrated vertex op at point of bndry of euclidean Poincaré patch

V(x) = / 22 V (2(€) - x) = / 26 (K (2(€) — x, 2(€))) 2 UL



Massless mode vertex operators

e Dilaton

V= (Ye) 2 (Xp)? (0YmOY™ + 0X,0X}, + fermions)
X, = X1 +iXy5 = cost) e, A=4+J

dual to Tr(F2 Z7 + ...)

e Superconformal primary scalar

0,J,0], J=>=2,0f SO(6)

A = J, dualtoTrz’

originates from trace graviton in S° directions

induces components of graviton in AdS5 directions

and mixes with the RR 5-form

relevant part of bosonic term in vertex op. [Berenstein et al 98]

Vj= (Y+)—A Xi 2_2(8xm5xm — 8,25’2) — 6’X;€5Xk}

4+6 split: flipped sign of 6-part



String states on leading Regge trajectory
flat space: spin S state

| -
Vg = e Bt (8ch9xx) 2, Xy = 1 + 129,

B=\/2(5-2
AdSs x S° analogs (E — A)

|

Vs = (Y4) 2(0Y.0Y,)
V= (Y1) 2 (0X,0X,)

T Y, =YY,

D&

4o X, = X +iX,
V ; may mix with (p,q =0, ..., %; [Lk=1,..,0)
(X,)2P129(0X, )2 72 (9X,) 2 299X 0X)P (DX 10X )1

true vertex ops= eigenvectors of 2d anom dim matrix
cf. solving Lichnerowitz type eq for tensor wave function

AT = (2— 5+ 1a/V2 + zcka’k(R....)n...vp} =0
considering such ops as “heavy” ( treated semiclassically)

may ignore mixing to leading order:
need only solution they source to have definite energy or A



Singlet massive string states

special massive string state vertex operators

with finite quantum numbers

with leading-order bosonic part known explicitly
singlet operators that do not mix with others

to leading order in % [A.T. 03]

can be used as “light” vertex operators
V, = (Y1) 2(0X,0X,0X,0X,)?, r=2.4,..
ignoring fermionic contributions, marginality cond

0=7 —2—27“—1—2\/— A(A —4)+8r| +O(

_ _ __2r—1
A=2/r —1vVA+2 mé/——FO((\/—):i)
the corresponding singlet scalar field should satisfy
(V24 M2 +.)® =0, M?=AA—4)=4(r—-1)VI+..

#)
(V)2

AdS5 counterpart:
Vi = (Y3) 2(0Yn oY Moy oY V2 | k=24, ..



k = 2 represents a massive state on first excited string level
should be dual to a member of Konishi multiplet
[Bianchi, Morales, Samtleben 03; Roiban, A.T. 09]



Semiclassical approximation for 2-point correlator

point-like string with large orbital momentum in S°
t = k7 (in AdSs) and ¢ = k7 (in S°)
massive AdS geodesic, reaches bndry after Euclidean cont.

z = [cosh(kTe)] ™!, Zoe = tanh(kTe), ¢ = —ikTe, To = iT

Te > Fxoo: z2—0, xge==x1, x;, =0

vertex ops at 7. = oo on Euclidean 2d cylinder
mapped to & and &> on the € complex plane by

eTetio — §-&

solution W%thgéiven charges on a Lorenzian 2d cylinder

mapped onto the complex plane:

stationary trajectory for 2-point function (V'V') with given charges
“delta-function” sources from V’s at &1 and &»

matching onto sources relates parameters of solution

to quantum numbers (A, J,...) of V'’s



Example: large spin operator in AdS

<Vs (Xl)Vs (x2))
= f d2 [Z + z CC - X)2] -8 [an—X 5Ym—x]
Yx = Yl + 1Y, = Dtirs

ifA~S~VAS>L S=2>1

semicl. trajectory = conf. transformed euclidean contn

of large spin limit of spinning folded string solution
t=kT, G=KT, p=Lu0, m:u%%1n8>>1
Euclidean solution in Poincaré coordinates

z = [cosh(kT.) cosh(puo)] ™,  xge = tanh(kTe),

r1 = tanh(uo) , ro = —itanh(uo) tanh(kt.),

+ip _ tanh(uo) +r7
— cosh(kTe) ?

S/2

T4 =21 £ 1xo =€

4 ad, +ai+xi=1

Lorenzian: string moves to center of AdS rotating and stretching
Euclidean continuation: gives complex world surface
approaching boundary z = 0



Te — F00: x0. — £1 and “light-like” lines in (1, x2):

Te >+00 : 2—0, zge — 1,
ry — 2tanh(po), z_ —0
Te > —00 @ z2—0, xge — —1,

ry — 0, x_ — 2tanh(uo)

surface does not simply end at 2 points at boundary

but no such requirement:

trajectory should be “sourced” by 2 vertex ops at x; and x»
boundary values of classical string coordinates need not

coincide with positions of vertex operators
above choice for x; = (1,0,0,0) and x; = (—1,0,0,0)



similarly for large S, large J = v/ AJ in S°

Vs,4(0) = / 42 (Y1) ™2 (X,)? (9Y, 8Y,) ™"

euclidean semiclassical solution
te = KTe, @O = —1KTe, 0= Uo, ©=—IUT,

k=vVp2+1v?, prilhS>1, v=J

E—S:\/J2+%1n23:§\/€2+11n8, (=

14
0

dual to Tr(D*® Z”) operator in gauge theory



3-point functions of two “heavy” and one “light” states

leading v/ > 1 order of (Vi (x1)Va, (x2)Vi(x3))
for Ay, = A, ~ VIS Ap = A

(i) find semiclassical trajectory for (Vi (x1)Va, (x2))
(ii) evaluate V7, (x3) on it
conformal invariance: sufficient to consider x3 = (0, 0,0, 0)

VL(0) = [ &6 (Y4) ™ Ula(€). 2(€). X (©)
for all simple classical solutions for Vg
P 4r,am=1, ie. Y;=0, Y5:Y+:z_1

and approach boundary at [x1| =1, |x3| =1

Vi, (x1) Vi, (x2)VL(0))
Vi, (x1) Vi, (x2))

. / ¢ 25(€) Ul (€), 2(€), X (&)]

Clo3 =



Vg corresponding to large spin (S, .J) string

V1, as dilaton operator

27
C123 = CA / dTe/ dO’Z U

U= (X,) [ 202, 0™ 4 020%) —|—(9Xk0Xk]

. J+3 _ S
CA_Qj/2—|—17T2’ A=dty I
50 z 9,2 pIVTe
Clo3 = 4ca / dTe/ do i A
oo 0 | cosh(po) cosh(kTe)]

/4:2:/12+V2, N:%1n5>>1 V:j:%, S:%
Ci23 ~ 2F1(%7%(5+j)7— — sinh (2#))



j =0, A =4,large S limit:
In S
\/J2 - % In® S

0123 ~

o] > glnS: 0123%0
dilaton does not couple to BMN states

o J K g InS: (193 — const

dilaton couples to massive states as expected
S=[d"¥% /g(0"¥9,T + M?*e7*TW? + ..)

relation to dimension of Vi :

A
AS,J:S+\/J2+—anS+...

T2

cf. “soft dilaton” theorem, but difference by “IR factor In .S”



V1, as superconformal primary scalar

A=j<J, ca=YRMY

]I/’Te

2 2e coshg?m- ) B ,u2 tanhQ (/LO’)}
0123 = 4CA / dTe/ do -
| cosh(po) cosh(kTe)]

A

e />InS
formal limit  — 0
20 20en  wT 1
Clion = o — —JN\/9
1287750 Pas T TN Vi
agrees with result for 3 BMN states Cla3 = + /71273
with j1 = jo = J, j3 =
e NnS>J

e LG +2)/2) 1G-DG/2) Y
Cras = dea g7 +3)/2) [ T((+1)/2)  joi2

approaches const as expected



V1, as fixed-spin operator on leading Regge trajectory

Vi: spinS ~ VA, Ag=85+...~VA>1

Vi spins, Ay =+/2(s—2)VA+.., s5<8, A, < Ag
A 2 2 s/2
U = (0Y,0Y,)%/? = e2srme {/ﬁ cosh” (o) 4+ K sinh (,ua)}

0123 ~ Ius—2 ~ (ln S)S—2

0123 ~ (anom. dim. of heavy Operator)string level of light operator



V1, as singlet massive scalar operator

massive state at level » — 1:

Ay =2/(r = DVA+.. € Ag~ /A

on (S, J) solution

U = (0Xp0X,0X,0X)"? = (0 0Y MY OY ¥) /2 = 77

Cia3 = B(r,()(InS8)* 2 (8'/? —=§7/2) , iy (%, 3(A 4 1),

287 =2 (A, /2)]2 27 ©J
w22 T(A) 1+ 027 In
InS > 1, J > 1, fixed ¢

B(r,f) = ca

£2r
Chron o

(ln 8)27“—2 ~

J2r
In S \/J2+ %ln25

C123 ~ (anom. dim. of heavy Operator)string level of light operator



Large s behaviour:

Clos A ;fz o(5=2) Inln S+hr, (s)+ho(s)
= (38 =) (1= 3+ (At ) (15 1),
hy = %ASIHQ + %Asln (1 — Ai> — sln (% — 1)

If formally assume that s ~ v\ > 1

then A, = \/2(5 — 2)(‘/X—|— o~V

so function in exponent ~ v/ A

as should be in semiclassical limit

may help shed light on the case when all 3 states are “heavy” ?




Vi corresponding to “small” circular string in S°

state with J; = Jo = J #£ J3

(Vg Vg ) determined by
t = KT, X1_|_z'2 = a 6iw7_+ia, X3_|_7;4 — a ein_iU, X5_|_@'6 =V 1 — 2a? 67;1/7_
w=\1+12, k=+V4a2+12, J=Jy=J=vV w, J; :\/X(l—QQQ)V

euclidean trajectory:
same as for massive AdS geodesic + complex surface for X

V1, as dilaton operator
A=4+7
2 iz [ e’V
0123 — CA87TCL (1 — 2a )‘7/ / dTe
—0o [ cosh(kTe)]

A

l/NJgZOZ

J
Craz ~ VJ (1 — 2TA)



case of a = %: “large” circular string with J; = Jo, J3 =0

Aj=+4J% + )\
16 VA e 0

Cl23 = —Tca

~VIi—=A
3 VATZ + )\ avx

similar observation made by Costa et al

V1, as singlet massive scalar

for “small” string with /1, = Jo =7, J3 = 0,k = V2T
0123 N (\/j)2r—1 -~ (AJ)27"—1

again scales as power of level of the “light” string state

small J = % limit may be used to approximate string states
with fixed quantum number J

e.g., r = 2: first excited string level

shed light on 3-point functions involving Konishi operator ?



Concluding remarks

e semiclassical approximation:

novel data for 3-point functions involving massive string states
e cxtension of semiclassical approach to 4-point functions
(VaVyg Vi V) (in progress)

relevant example: all 4 states are chiral primary

[0,p,0] with arbitrary p [Uruchurtu 08]

e extensions to other states:

need to know vertex operators of AdSs x S° superstring

e hidden symmetries that control 3-point coupling?

string field theory 3-vertex for AdSs x S° superstring ?

e role of integrability?

relation to semiclassical approach [Alday, Maldacena, et al ]
to open string correlators / Wilson loops?



