On semiclassical approximation to correlators of closed string vertex operators in $A d S_{5} \times S^{5}$

Arkady Tseytlin

- R. Roiban and A.T., On semiclassical computation of 3-pt functions of closed string vertex operators in $A d S_{5} \times S^{5} 1008.4921$
- E. Buchbinder and A.T., On semiclassical approximation for correlators of closed string vertex operators in AdS/CFT. 1005.4516

Closely related papers:

- R. Janik, P. Surowka and A. Wereszczynski, On correlation
functions of operators dual to classical spinning string states, 1002.4613
- K. Zarembo, Holographic three-point functions of semiclassical states, 1008.1059
- M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, "On 3-point correlation functions in the gauge/gravity duality," 1008.1070
planar $\mathrm{N}=4 \mathrm{SYM}=$ tree-level $A d S_{5} \times S^{5}$ string
solve 4 d CFT $=$ solve string theory $\subset 2 \mathrm{~d}$ CFT
(i) spectrum of dimensions of primary operators
(ii) 3-point correlators
spectrum is determined by integrability (Kazakov's talk)
3-point functions not (?) controlled by integrability
(cf. flat-space string theory)
what is known about 3-point functions?
- $1 / 2$ BPS operators $=$ massless $A d S_{5} \times S^{5}$ string modes
(IIB supergravity fields)
3-point functions (like dimensions) are protected

$$
C_{J_{1} J_{2} J_{3}}=\frac{1}{N} \sqrt{J_{1} J_{2} J_{3}}
$$

[Lee, Minwalla, Rangamani, Seiberg 98,]
general arguments for protection ...

- correlators involving non-BPS operators (massive string modes)
weak coupling :
direct 1-loop computations
$C_{123}=C_{123}^{(0)}\left(1+\lambda \sum_{n=1}^{3} c_{n} \gamma_{n}^{(1)}+\ldots\right)$
$\Delta_{n}=\Delta_{n}(0)+\gamma_{n}, \quad \gamma_{n}=\lambda \gamma_{n}^{(1)}+\lambda^{2} \gamma_{n}^{(2)}+\ldots$
[Bianchi, Kovacs, Rossi, Stanev 01;
Okuyuama, Tseng 04; Grosardt, Plefka 10] may also use perturbed spin chain Hamiltonian to compute some correlation functions [Roiban, Volovich 04]
strong coupling: little is known
[some earlier studies in near-BMN limit are inconclusive] if, e.g., conjecture exponentiation ($\exp \sum_{n=1}^{3} c_{n} \gamma_{n}$) then $e^{a \sqrt{\lambda}}$ behaviour at strong coupling for operators
with large quantum numbers $\Delta \sim S \sim \sqrt{\lambda}$
can be captured by semiclassical approximation as for 2-point functions?
[Janik, Surowka, Wereszczynski 10; Buchbinder, AT 10]
special case:
two "heavy" operators with $\Delta_{1,2} \sim \sqrt{\lambda}$
one "light" operator $\Delta_{3} \ll \sqrt{\lambda}$:
correlator saturated by semiclassical trajectory
determined by "heavy" states
- "light" state is BPS:
K. Zarembo, 1008.1059;
M.S. Costa, R. Monteiro, J.E. Santos, D. Zoakos, 1008.1070
- "light" state is non-BPS:
R. Roiban, A.T., 1008.4921

Lessons ?
Extension of similar semiclassical approach to special 4-point functions with non-BPS states ?

Planar N=4 SYM $-A d S_{5} \times S^{5}$ string duality:
4 d CFT vs 2 d CFT
planar correlators of single-tr conformal primary ops in SYM
$=$ correlators of closed-string vertex ops on 2 -sphere
equality of generating functionals

$$
\left\langle e^{\Phi \cdot O}\right\rangle_{4 d}=\left\langle e^{\Phi \cdot V}\right\rangle_{2 d}
$$

$O=$ primary SYM operator of dimension Δ
$V=$ corresponding marginal string vertex operator

$$
\begin{aligned}
& \Phi \cdot O=\int d^{4} x^{\prime} \Phi\left(x^{\prime}\right) O\left(x^{\prime}\right) \\
& \Phi \cdot V=\int d^{4} x^{\prime} \Phi\left(x^{\prime}\right) V\left(x^{\prime}, z, \ldots\right) \\
& V=\int d^{2} \xi \mathrm{~V}\left(\xi ; x^{\prime}, z, \ldots\right)
\end{aligned}
$$

Poincare patch: $d s^{2}=z^{-2}\left(d z^{2}+d x^{m} d x_{m}\right)$
symbolic structure of vertex operators

$$
\begin{aligned}
& \mathrm{V}=K(\partial X \partial X+\ldots) \\
& \quad K\left(x-x^{\prime} ; z\right)=c\left[z+z^{-1}\left(x-x^{\prime}\right)^{2}\right]^{-\Delta} \\
& K\left(x-x^{\prime} ; z\right)_{z \rightarrow 0}=\delta^{(4)}\left(x-x^{\prime}\right)
\end{aligned}
$$

2-point and 3-point correlators special: x-dependence fixed by 4 d conf. invariance

$$
\begin{aligned}
& \left\langle V_{1}(\mathrm{x}) V_{2}\left(\mathrm{x}^{\prime}\right)\right\rangle_{4 d}=\frac{\delta_{\Delta_{1}, \Delta_{2}}}{\left|\mathrm{x}-\mathrm{x}^{\prime}\right|^{2 \Delta_{1}}} \\
& \left\langle V_{1}(\mathrm{x}) V_{2}\left(\mathrm{x}^{\prime}\right) V_{3}\left(\mathrm{x}^{\prime \prime}\right)\right\rangle_{4 d} \\
& =\frac{C_{123}}{\left|\mathrm{x}-\mathrm{x}^{\prime}\right|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}\left|\mathrm{x}-\mathrm{x}^{\prime \prime}\right|^{\Delta_{1}+\Delta_{3}-\Delta_{2}}\left|\mathrm{x}^{\prime}-\mathrm{x}^{\prime \prime}\right|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}}
\end{aligned}
$$

Similar relations for correlators of O 's corresponding V 's

Problems:

- compute the spectrum, i.e. functions $\Delta(\lambda, Q)$
$\lambda=g_{\mathrm{YM}}^{2} N$, string tension $T=\frac{\sqrt{\lambda}}{2 \pi}$
$Q=\left(S_{1}, S_{2}, J_{1}, J_{2}, J_{3} ; \ldots, \ldots\right)-$ charges characterizing O_{Δ}
- compute $C_{123}\left(\lambda, Q_{1}, Q_{2}, Q_{3}\right)$
higher-point correlators - via OPE

General idea of semiclassical approach:
$V \sim(\ldots)^{\Delta}(\ldots)^{Q}$
so if Δ and the charges Q scale as $T=\frac{\sqrt{\lambda}}{2 \pi}$ they produce terms in

$$
\langle V \ldots V\rangle=\int[d x] V \ldots V \exp \left(-T \int d^{2} \xi \partial X \partial X+\ldots\right)
$$

of same order as string action -
$\sqrt{\lambda} \gg 1$ limit is dominated by classical trajectory with vertex operators providing "source terms"
\rightarrow may lead to a prediction for strong-coupling behaviour of corresponding gauge theory correlators
similar idea for 2-point functions [Polyakov 02; A.T. 03] and correlators with Wilson loops [Zarembo 02; Tsuji 06]

Consider

$\mathrm{K}_{n, m}=\left\langle V_{H_{1}}\left(\mathrm{x}_{1}\right) \ldots V_{H_{n}}\left(\mathrm{x}_{n}\right) V_{L_{1}}\left(\mathrm{x}_{n+1}\right) \ldots V_{L_{m}}\left(\mathrm{x}_{n+m}\right)\right\rangle$
V_{H} - "heavy" ("semiclassical") with $\Delta_{H} \sim Q \sim \sqrt{\lambda} \gg 1$
V_{L} - "light" (or "quantum") with $Q \sim 1$
and $\Delta_{L} \sim \sqrt[4]{\lambda}$ for massive string states
or $\Delta_{L} \sim 1$ for "massless" (BPS) string states may expect that for large $\sqrt{\lambda}$ leading contribution given by semiclassical string trajectory determined by the "heavy" operator insertions

Strategy:

(i) construct classical solution that determines large $\sqrt{\lambda}$ contribution to $\mathrm{K}_{n}=\left\langle V_{H_{1}}\left(\mathrm{x}_{1}\right) \ldots V_{H_{n}}\left(\mathrm{x}_{n}\right)\right\rangle$
(ii) compute $\mathrm{K}_{n, m}$ by evaluating
$V_{L_{1}}\left(\mathrm{x}_{n+1}\right) \ldots V_{L_{m}}\left(\mathrm{x}_{n+m}\right)$ on that classical solution
motivation: contribution of "source" terms from "light" operators are subleading at $\sqrt{\lambda} \gg 1$

3-point functions:
semiclassical trajectory controlling $\lambda \gg 1$ limit of $\left\langle V_{H_{1}}\left(\mathrm{x}_{1}\right) V_{H_{2}}\left(\mathrm{x}_{2}\right) V_{H_{3}}\left(\mathrm{x}_{3}\right)\right\rangle$
not known [cf. Janik et al, 10] (talk by Romuald Janik)
but can use semiclassical trajectory for $\left\langle V_{H_{1}}\left(\mathrm{x}_{1}\right) V_{H_{2}}\left(\mathrm{x}_{2}\right)\right\rangle$ [A.T. 03, Buchbinder, A.T. 10]
to compute leading contribution to
$\left\langle V_{H_{1}}\left(\mathrm{x}_{1}\right) V_{H_{2}}\left(\mathrm{x}_{2}\right) V_{L}\left(\mathrm{x}_{3}\right)\right\rangle$
Examples with V_{H} corresponding to some semiclassical string states with large spin in S^{5} and

- V_{L} as chiral primary scalar BPS state [Zarembo, 10]
- V_{L} as dilaton [Costa et al 10] (talk by Miguel Costa)

Our work [Roiban, A.T. 10]:
(i) more general choices of V_{H} :
twist operators or "small" strings dual to "short" operators
(ii) cases when V_{L} represents massive string modes

Examples of string vertex operators

$I=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \xi\left(\partial Y_{M} \bar{\partial} Y^{M}+\partial X_{k} \bar{\partial} X_{k}+\right.$ fermions $)$
$Y_{M} Y^{M}=-Y_{0}^{2}-Y_{5}^{2}+Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}=-1$
$X_{k} X_{k}=X_{1}^{2}+\ldots+X_{6}^{2}=1$
$V=V(Y, X, \psi)-$ highest weight states of $S O(2,4) \times S O(6)$
particular linear combinations of products of Y_{M}, X_{k}
and derivatives that are dim 2 eigenvectors of 2 d anom dim op leading $\sqrt{\lambda} \gg 1$: ignore fermions and $\alpha^{\prime} \sim \frac{1}{\sqrt{\lambda}}$ terms in V 's global and Poincaré coordinates in $A d S_{5}$

$$
\begin{aligned}
& Y_{5}+i Y_{0}=\cosh \rho e^{i t}, \quad Y_{1}+i Y_{2}=\sinh \rho \cos \theta e^{i \phi_{1}} \\
& Y_{3}+i Y_{4}=\sinh \rho \sin \theta e^{i \phi_{2}}, \quad Y_{m}=\frac{x_{m}}{z} \\
& Y_{4}=\frac{1}{2 z}\left(-1+z^{2}+x^{m} x_{m}\right), \quad Y_{5}=\frac{1}{2 z}\left(1+z^{2}+x^{m} x_{m}\right),
\end{aligned}
$$

$S O(2,4)$ rep labelled by $S O(2) \times S O(2) \times S O(2)$ Cartans $\left(E, S_{1}, S_{2}\right)$ wave function or a vertex op for state with AdS energy E
should contain a factor $\left(Y_{5}+i Y_{0}\right)^{-E}=(\cosh \rho)^{-E} e^{-i E t}$ or if labelled by $S O(1,1):\left(Y_{5}+Y_{4}\right)^{-\Delta}$
Euclidean continuation:

$$
t_{e}=i t, \quad Y_{0 e}=i Y_{0}, \quad x_{0 e}=i x_{0}
$$

$S O(2,4) \rightarrow S O(1,5), \quad Y_{0 e} \leftrightarrow Y_{4}, \quad E \leftrightarrow \Delta$, $\left(Y_{5}+i Y_{0}\right)^{-E} \rightarrow \mathrm{Y}_{+}^{-\Delta}, \quad \mathrm{Y}_{+} \equiv Y_{5}+Y_{4}$

$$
K(x, z)=k_{\Delta}\left(\mathrm{Y}_{+}\right)^{-\Delta}=k_{\Delta}\left(z+z^{-1} x^{m} x_{m}\right)^{-\Delta}
$$

$K(x, z \rightarrow 0)=\delta^{(4)}(x)$
solution of scalar Laplace eq in $A d S_{5}$ with mass $m^{2}=\Delta(\Delta-4)$ unintegrated vertex operator

$$
\mathrm{V} \sim\left(\mathrm{Y}_{+}\right)^{-\Delta}\left(\partial^{s} Y\right)^{r} \ldots\left(\bar{\partial}^{m} X\right)^{n} \equiv\left(\mathrm{Y}_{+}\right)^{-\Delta} U(Y, X, \ldots)
$$

integrated vertex op at point of bndry of euclidean Poincaré patch

$$
V(\mathrm{x})=\int d^{2} \xi \mathrm{~V}(x(\xi)-\mathrm{x})=\int d^{2} \xi[K(x(\xi)-\mathrm{x}, z(\xi))]^{-\Delta} U[\ldots]
$$

Massless mode vertex operators

- Dilaton

$$
\begin{aligned}
& \mathrm{V}_{J}=\left(\mathrm{Y}_{+}\right)^{-\Delta}\left(\mathrm{X}_{x}\right)^{J}\left(\partial Y_{M} \bar{\partial} Y^{M}+\partial X_{k} \bar{\partial} X_{k}+\text { fermions }\right), \\
& \mathrm{X}_{x} \equiv X_{1}+i X_{2}=\cos \vartheta e^{i \varphi}, \quad \Delta=4+J
\end{aligned}
$$

dual to $\operatorname{Tr}\left(F_{m n}^{2} Z^{J}+\ldots\right)$

- Superconformal primary scalar
$[0, J, 0], \quad J \geqslant 2$, of $S O(6)$
$\Delta=J$, dual to $\operatorname{Tr} Z^{J}$
originates from trace graviton in S^{5} directions
induces components of graviton in $A d S_{5}$ directions and mixes with the RR 5-form relevant part of bosonic term in vertex op. [Berenstein et al 98]

$$
\mathrm{V}_{J}=\left(\mathrm{Y}_{+}\right)^{-\Delta} \mathrm{X}_{x}^{J}\left[z^{-2}\left(\partial x^{m} \bar{\partial} x_{m}-\partial z \bar{\partial} z\right)-\partial X_{k} \bar{\partial} X_{k}\right]
$$

4+6 split: flipped sign of 6-part

String states on leading Regge trajectory
flat space: spin S state
$V_{S}=e^{-i E t}\left(\partial \mathrm{x}_{x} \bar{\partial} \mathbf{x}_{x}\right)^{\frac{S}{2}}, \quad \mathrm{x}_{x}=x_{1}+i x_{2}$,
$E=\sqrt{\frac{2}{\alpha^{\prime}}(S-2)}$
$A d S_{5} \times S^{5}$ analogs $(E \rightarrow \Delta)$

$$
\begin{array}{ll}
\mathrm{V}_{S}=\left(\mathrm{Y}_{+}\right)^{-\Delta}\left(\partial \mathrm{Y}_{x} \bar{\partial} \mathrm{Y}_{x}\right)^{\frac{S}{2}}+\ldots & \mathrm{Y}_{x}=Y_{1}+i Y_{2} \\
\mathrm{~V}_{J}=\left(\mathrm{Y}_{+}\right)^{-\Delta}\left(\partial \mathrm{X}_{x} \bar{\partial} \mathrm{X}_{x}\right)^{\frac{J}{2}}+\ldots & \mathrm{X}_{x}=X_{1}+i X_{2}
\end{array}
$$

V_{J} may mix with $\left(p, q=0, \ldots, \frac{J}{4} ; l, k=1, \ldots, 6\right)$
$\left(\mathrm{X}_{x}\right)^{2 p+2 q}\left(\partial \mathrm{X}_{x}\right)^{\frac{J}{2}-2 p}\left(\bar{\partial} \mathrm{X}_{x}\right)^{\frac{J}{2}-2 q}\left(\partial X_{\ell} \partial X_{\ell}\right)^{p}\left(\bar{\partial} X_{k} \bar{\partial} X_{k}\right)^{q}$,
true vertex ops= eigenvectors of 2d anom dim matrix
cf. solving Lichnerowitz type eq for tensor wave function
$\widehat{\gamma} \Psi=\left[2-S+\frac{1}{2} \alpha^{\prime} \nabla^{2}+\sum c_{k} \alpha^{\prime k}(R \ldots)^{n} \ldots \nabla^{p}\right] \Psi=0$
considering such ops as "heavy" (treated semiclassically)
may ignore mixing to leading order:
need only solution they source to have definite energy or Δ

Singlet massive string states

special massive string state vertex operators
with finite quantum numbers
with leading-order bosonic part known explicitly singlet operators that do not mix with others
to leading order in $\frac{1}{\sqrt{\lambda}}$ [A.T. 03]
can be used as "light" vertex operators

$$
\mathrm{V}_{r}=\left(\mathrm{Y}_{+}\right)^{-\Delta}\left(\partial X_{k} \partial X_{k} \bar{\partial} X_{\ell} \bar{\partial} X_{\ell}\right)^{r / 2}, \quad r=2,4, \ldots
$$

ignoring fermionic contributions, marginality cond

$$
\begin{aligned}
& 0=\widehat{\gamma}=2-2 r+\frac{1}{2 \sqrt{\lambda}}[\Delta(\Delta-4)+8 r]+O\left(\frac{1}{(\sqrt{\lambda})^{2}}\right) \\
& \Delta=2 \sqrt{r-1} \sqrt[4]{\lambda}+2-\frac{2 r-1}{\sqrt{r-1} \sqrt[4]{\lambda}}+\mathcal{O}\left(\frac{1}{(\sqrt[4]{\lambda})^{3}}\right)
\end{aligned}
$$

the corresponding singlet scalar field should satisfy $\left(-\nabla^{2}+M^{2}+\ldots\right) \Phi=0, \quad M^{2}=\Delta(\Delta-4)=4(r-1) \sqrt{\lambda}+\ldots$
$A d S_{5}$ counterpart:

$$
\mathrm{V}_{k}=\left(\mathrm{Y}_{+}\right)^{-\Delta}\left(\partial Y_{M} \partial Y^{M} \bar{\partial} Y_{K} \bar{\partial} Y^{K}\right)^{k / 2}, \quad k=2,4, \ldots
$$

$k=2$ represents a massive state on first excited string level should be dual to a member of Konishi multiplet [Bianchi, Morales, Samtleben 03; Roiban, A.T. 09]

Semiclassical approximation for 2-point correlator

point-like string with large orbital momentum in S^{5}
$t=\kappa \tau$ (in $A d S_{5}$) and $\varphi=\kappa \tau$ (in S^{5})
massive AdS geodesic, reaches bndry after Euclidean cont.

$$
\begin{aligned}
& z=\left[\cosh \left(\kappa \tau_{e}\right)\right]^{-1}, \quad x_{0 e}=\tanh \left(\kappa \tau_{e}\right), \quad \varphi=-i \kappa \tau_{e}, \tau_{e}=i \tau \\
& \tau_{e} \rightarrow \pm \infty: \quad z \rightarrow 0, \quad x_{0 e}= \pm 1, \quad x_{i}=0
\end{aligned}
$$

vertex ops at $\tau_{e}= \pm \infty$ on Euclidean 2d cylinder mapped to ξ_{1} and ξ_{2} on the ξ complex plane by $e^{\tau_{e}+i \sigma}=\frac{\xi-\xi_{2}}{\xi-\xi_{1}}$.
solution with given charges on a Lorenzian 2d cylinder mapped onto the complex plane:
stationary trajectory for 2-point function $\langle V V\rangle$ with given charges "delta-function" sources from V 's at ξ_{1} and ξ_{2} matching onto sources relates parameters of solution
to quantum numbers (Δ, J, \ldots) of V 's

Example: large spin operator in AdS
$\left\langle V_{S}\left(\mathrm{x}_{1}\right) V_{S}^{*}\left(\mathrm{x}_{2}\right)\right\rangle$
$V_{S}(\mathrm{x})=\int d^{2} \xi\left[z+z^{-1}(x-\mathrm{x})^{2}\right]^{-\Delta}\left[\partial \mathrm{Y}_{x-\mathrm{x}} \bar{\partial} \mathrm{Y}_{x-\mathrm{x}}\right]^{S / 2}$
$\mathrm{Y}_{x}=Y_{1}+i Y_{2}=\frac{x_{1}+i x_{2}}{z}$
if $\Delta \sim S \sim \sqrt{\lambda} \gg 1, \quad \mathcal{S}=\frac{S}{\sqrt{\lambda}} \gg 1$
semicl. trajectory $=$ conf. transformed euclidean contn of large spin limit of spinning folded string solution

$$
t=\kappa \tau, \quad \phi=\kappa \tau, \quad \rho=\mu \sigma, \quad \kappa=\mu \approx \frac{1}{\pi} \ln \mathcal{S} \gg 1
$$

Euclidean solution in Poincaré coordinates

$$
\begin{aligned}
& z=\left[\cosh \left(\kappa \tau_{e}\right) \cosh (\mu \sigma)\right]^{-1}, \quad x_{0 e}=\tanh \left(\kappa \tau_{e}\right), \\
& x_{1}=\tanh (\mu \sigma), \quad x_{2}=-i \tanh (\mu \sigma) \tanh \left(\kappa \tau_{e}\right), \\
& x_{ \pm} \equiv x_{1} \pm i x_{2}=r e^{ \pm i \phi}=\frac{\tanh (\mu \sigma)}{\cosh \left(\kappa \tau_{e}\right)}{ }^{e \kappa \kappa \tau_{e}}, \\
& z^{2}+x_{0 e}^{2}+x_{1}^{2}+x_{2}^{2}=1
\end{aligned}
$$

Lorenzian: string moves to center of AdS rotating and stretching Euclidean continuation: gives complex world surface approaching boundary $z=0$
$\tau_{e} \rightarrow \pm \infty: \quad x_{0 e} \rightarrow \pm 1$ and "light-like" lines in $\left(x_{1}, x_{2}\right):$

$$
\begin{aligned}
\tau_{e} \rightarrow+\infty: & z \rightarrow 0, x_{0 e} \rightarrow 1, \\
& x_{+} \rightarrow 2 \tanh (\mu \sigma), \quad x_{-} \rightarrow 0 \\
\tau_{e} \rightarrow-\infty: & z \rightarrow 0, x_{0 e} \rightarrow-1, \\
& x_{+} \rightarrow 0, \quad x_{-} \rightarrow 2 \tanh (\mu \sigma)
\end{aligned}
$$

surface does not simply end at 2 points at boundary but no such requirement: trajectory should be "sourced" by 2 vertex ops at x_{1} and x_{2} boundary values of classical string coordinates need not coincide with positions of vertex operators above choice for $\mathrm{x}_{1}=(1,0,0,0)$ and $\mathrm{x}_{2}=(-1,0,0,0)$
similarly for large S, large $J=\sqrt{\lambda} \mathcal{J}$ in S^{5}

$$
V_{S, J}(0)=\int d^{2} \xi\left(\mathrm{Y}_{+}\right)^{-\Delta}\left(\mathrm{X}_{x}\right)^{J}\left(\partial \mathrm{Y}_{x} \bar{\partial} \mathrm{Y}_{x}\right)^{S / 2}
$$

euclidean semiclassical solution

$$
\begin{aligned}
& t_{e}=\kappa \tau_{e}, \quad \phi=-i \kappa \tau_{e}, \quad \rho=\mu \sigma, \quad \varphi=-i \nu \tau_{e} \\
& \kappa=\sqrt{\mu^{2}+\nu^{2}}, \quad \mu \approx \frac{1}{\pi} \ln \mathcal{S} \gg 1, \quad \nu=\mathcal{J} \\
& E-S=\sqrt{J^{2}+\frac{\lambda}{\pi^{2}} \ln ^{2} \mathcal{S}}=\frac{\sqrt{\lambda}}{\pi} \sqrt{\ell^{2}+1} \ln \mathcal{S}, \quad \ell \equiv \frac{\nu}{\mu}
\end{aligned}
$$

dual to $\operatorname{Tr}\left(D^{S} Z^{J}\right)$ operator in gauge theory
leading $\sqrt{\lambda} \gg 1$ order of $\left\langle V_{H_{1}}\left(\mathrm{x}_{1}\right) V_{H_{2}}\left(\mathrm{x}_{2}\right) V_{L}\left(\mathrm{x}_{3}\right)\right\rangle$ for $\Delta_{H_{1}}=\Delta_{H_{2}} \sim \sqrt{\lambda} \gg \Delta_{L} \equiv \Delta$
(i) find semiclassical trajectory for $\left\langle V_{H_{1}}\left(\mathrm{x}_{1}\right) V_{H_{2}}\left(\mathrm{x}_{2}\right)\right\rangle$
(ii) evaluate $V_{L}\left(\mathrm{x}_{3}\right)$ on it conformal invariance: sufficient to consider $\mathrm{x}_{3}=(0,0,0,0)$

$$
V_{L}(0)=\int d^{2} \xi\left(\mathrm{Y}_{+}\right)^{-\Delta_{L}} U[x(\xi), z(\xi), X(\xi)]
$$

for all simple classical solutions for V_{H}

$$
z^{2}+x_{m} x^{m}=1, \quad \text { i.e. } \quad Y_{4}=0, \quad Y_{5}=\mathrm{Y}_{+}=z^{-1}
$$

and approach boundary at $\left|\mathrm{x}_{1}\right|=1,\left|\mathrm{x}_{2}\right|=1$

$$
\begin{aligned}
C_{123} & =\frac{\left\langle V_{H_{1}}\left(\mathrm{x}_{1}\right) V_{H_{2}}\left(\mathrm{x}_{2}\right) V_{L}(0)\right\rangle}{\left\langle V_{H_{1}}\left(\mathrm{x}_{1}\right) V_{H_{2}}\left(\mathrm{x}_{2}\right)\right\rangle} \\
& =c_{\Delta} \int d^{2} \xi z^{\Delta}(\xi) U[x(\xi), z(\xi), X(\xi)]
\end{aligned}
$$

V_{H} corresponding to large spin (S, J) string
V_{L} as dilaton operator

$$
\begin{aligned}
& C_{123}=c_{\Delta} \int_{-\infty}^{\infty} d \tau_{e} \int_{0}^{2 \pi} d \sigma z^{\Delta} U, \\
& U=\left(\mathrm{X}_{x}\right)^{j}\left[z^{-2}\left(\partial x_{m} \bar{\partial} x^{m}+\partial z \bar{\partial} z\right)+\partial X_{k} \bar{\partial} X_{k}\right] \\
& c_{\Delta}=\frac{j+3}{2^{j / 2+1} \pi^{2}}, \quad \Delta=4+j, \quad j \ll J
\end{aligned}
$$

$C_{123}=4 c_{\Delta} \int_{-\infty}^{\infty} d \tau_{e} \int_{0}^{\frac{\pi}{2}} d \sigma \frac{2 \mu^{2} e^{j \nu \tau_{e}}}{\left[\cosh (\mu \sigma) \cosh \left(\kappa \tau_{e}\right)\right]^{\Delta}}$
$\kappa^{2}=\mu^{2}+\nu^{2}, \quad \mu=\frac{1}{\pi} \ln \mathcal{S} \gg 1, \quad \nu=\mathcal{J}=\frac{J}{\sqrt{\lambda}}, \mathcal{S}=\frac{S}{\sqrt{\lambda}}$
$C_{123} \sim{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}(5+j), \frac{3}{2},-\sinh ^{2}\left(\frac{\pi}{2} \mu\right)\right), \ldots$
$j=0, \Delta=4$, large S limit:

$$
C_{123} \sim \frac{\ln S}{\sqrt{J^{2}+\frac{\lambda}{\pi^{2}} \ln ^{2} S}}
$$

- $J \gg \frac{\sqrt{\lambda}}{\pi} \ln S: \quad C_{123} \rightarrow 0$
dilaton does not couple to BMN states
- $J \ll \frac{\sqrt{\lambda}}{\pi} \ln S: \quad C_{123} \rightarrow$ const
dilaton couples to massive states as expected
$\mathrm{S}=\int d^{10} x \sqrt{g}\left(\partial^{\mu} \Psi \partial_{\mu} \Psi+M^{2} e^{\gamma \Phi} \Psi^{2}+\ldots\right)$
relation to dimension of V_{H} :

$$
\begin{gathered}
\sqrt{\lambda} \frac{\partial}{\partial \sqrt{\lambda}} \Delta_{S, J}=\frac{\ln ^{2} S}{\pi^{2} \sqrt{J^{2}+\frac{\lambda}{\pi^{2}} \ln ^{2} S}}+\ldots \\
\Delta_{S, J}=S+\sqrt{J^{2}+\frac{\lambda}{\pi^{2}} \ln ^{2} S}+\ldots
\end{gathered}
$$

cf. "soft dilaton" theorem, but difference by "IR factor $\ln S$ "
V_{L} as superconformal primary scalar
$\Delta=j \ll J, \quad c_{\Delta}=\frac{(j+1) \sqrt{j}}{2^{j+2} \pi N}$
$C_{123}=4 c_{\Delta} \int_{-\infty}^{\infty} d \tau_{e} \int_{0}^{\frac{\pi}{2}} d \sigma \frac{2 e^{j \nu \tau_{e}}\left[\frac{\kappa^{2}}{\cosh ^{2}\left(\kappa \tau_{e}\right)}-\mu^{2} \tanh ^{2}(\mu \sigma)\right]}{\left[\cosh (\mu \sigma) \cosh \left(\kappa \tau_{e}\right)\right]^{\Delta}}$

- $\mathcal{J} \gg \ln \mathcal{S}$
formal limit $\mu \rightarrow 0$

$$
C_{123}=\frac{2^{j+2} \pi c_{\Delta}}{j+1} \mu \frac{\pi \mathcal{J}}{\ln \mathcal{S}}+\ldots \rightarrow \frac{1}{N} J \sqrt{j}
$$

agrees with result for 3 BMN states $C_{123}=\frac{1}{N} \sqrt{j_{1} j_{2} j_{3}}$
with $j_{1}=j_{2}=J, j_{3}=j$

- $\ln \mathcal{S} \gg \mathcal{J}$

$$
C_{123}=4 c_{\Delta} \pi \frac{\Gamma((j+2) / 2)}{j \Gamma((j+3) / 2)}\left[\frac{(j-1) \Gamma(j / 2)}{\Gamma((j+1) / 2)}+\frac{2^{j}}{j \mathcal{S}^{j / 2}}+\ldots\right]
$$

approaches const as expected
V_{L} as fixed-spin operator on leading Regge trajectory
$V_{H}: \quad \operatorname{spin} S \sim \sqrt{\lambda}, \quad \Delta_{S}=S+\ldots \sim \sqrt{\lambda} \gg 1$
$V_{L}: \quad \operatorname{spin} s, \quad \Delta_{s}=\sqrt{2(s-2)} \sqrt[4]{\lambda}+\ldots, \quad s \ll S, \Delta_{s} \ll \Delta_{S}$
$U=\left(\partial \mathrm{Y}_{x} \bar{\partial} \mathrm{Y}_{x}\right)^{s / 2}=e^{2 s \kappa \tau_{e}}\left[\mu^{2} \cosh ^{2}(\mu \sigma)+\kappa^{2} \sinh ^{2}(\mu \sigma)\right]^{s / 2}$
$C_{123} \sim \mu^{s-2} \sim(\ln S)^{s-2}$
$C_{123} \sim(\text { anom. dim. of heavy operator })^{\text {string level of light operator }}$
V_{L} as singlet massive scalar operator
massive state at level $r-1$:
$\Delta_{r}=2 \sqrt{(r-1) \sqrt{\lambda}}+\ldots \ll \Delta_{S} \sim \sqrt{\lambda}$
on (S, J) solution

$$
U=\left(\partial X_{k} \partial X_{k} \bar{\partial} X_{\ell} \bar{\partial} X_{\ell}\right)^{r / 2}=\left(\partial Y_{M} \partial Y^{M} \bar{\partial} Y_{K} \bar{\partial} Y^{K}\right)^{r / 2}=\mathcal{J}^{2 r}
$$

$$
\begin{aligned}
& C_{123}=B(r, \ell)(\ln \mathcal{S})^{2 r-2}\left(\mathcal{S}^{1 / 2}-\mathcal{S}^{-1 / 2}\right){ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}\left(\Delta_{r}+1\right), \frac{3}{2},-\frac{1}{4}\left(\mathcal{S}-2+\mathcal{S}^{-1}\right)\right) \\
& B(r, \ell)=c_{\Delta} \frac{2^{\Delta_{r}-2}\left[\Gamma\left(\Delta_{r} / 2\right)\right]^{2}}{\pi^{2 r-2} \Gamma\left(\Delta_{r}\right)} \frac{\ell^{2 r}}{\sqrt{1+\ell^{2}}}, \quad \ell \equiv \frac{\pi \mathcal{J}}{\ln \mathcal{S}}
\end{aligned}
$$

$\ln \mathcal{S} \gg 1, \mathcal{J} \gg 1$, fixed ℓ
$C_{123} \sim \frac{\ell^{2 r}}{\sqrt{1+\ell^{2}}}(\ln \mathcal{S})^{2 r-2} \sim \frac{J^{2 r}}{\ln S \sqrt{J^{2}+\frac{\lambda}{\pi^{2}} \ln ^{2} S}}$
$C_{123} \sim(\text { anom. dim. of heavy operator })^{\text {string level of light operator }}$

Large s behaviour:

$$
\begin{aligned}
& C_{123} \approx \frac{c_{\Delta_{s}}}{\pi^{s-2}} e^{(s-2) \ln \ln \mathcal{S}+h_{\tau_{e}}(s)+h_{\sigma}(s)} \\
& h_{\tau_{e}}=\left(\frac{1}{2} \Delta_{s}-s\right) \ln \left(1-\frac{2 s}{\Delta_{s}}\right)+\left(\frac{1}{2} \Delta_{s}+s\right) \ln \left(1+\frac{2 s}{\Delta_{s}}\right) \\
& h_{\sigma}=\frac{1}{2} \Delta_{s} \ln 2+\frac{1}{2} \Delta_{s} \ln \left(1-\frac{s}{\Delta_{s}}\right)-s \ln \left(\frac{\Delta_{s}}{s}-1\right)
\end{aligned}
$$

If formally assume that $s \sim \sqrt{\lambda} \gg 1$ then $\Delta_{s}=\sqrt{2(s-2)} \sqrt[4]{\lambda}+\ldots \sim \sqrt{\lambda}$ so function in exponent $\sim \sqrt{\lambda}$ as should be in semiclassical limit may help shed light on the case when all 3 states are "heavy"?

V_{H} corresponding to "small" circular string in S^{5}

state with $J_{1}=J_{2}=J \neq J_{3}$
$\left\langle V_{H} V_{H}\right\rangle$ determined by

$$
\begin{aligned}
& t=\kappa \tau, \quad X_{1+i 2}=a e^{i w \tau+i \sigma}, \quad X_{3+i 4}=a e^{i w \tau-i \sigma}, \quad X_{5+i 6}=\sqrt{1-2 a^{2}} e^{i \nu \tau} \\
& w=\sqrt{1+\nu^{2}}, \quad \kappa=\sqrt{4 a^{2}+\nu^{2}}, \quad J_{1}=J_{2}=J=\sqrt{\lambda} a^{2} w, \quad J_{3}=\sqrt{\lambda}\left(1-2 a^{2}\right) \nu
\end{aligned}
$$

euclidean trajectory:
same as for massive AdS geodesic + complex surface for X_{k}
V_{L} as dilaton operator
$\Delta=4+j$
$C_{123}=c_{\Delta} 8 \pi a^{2}\left(1-2 a^{2}\right)^{j / 2} \int_{-\infty}^{\infty} d \tau_{e} \frac{e^{j \nu \tau_{e}}}{\left[\cosh \left(\kappa \tau_{e}\right)\right]^{\Delta}}$
$\nu \sim J_{3}=0:$

$$
C_{123} \sim \sqrt{J}\left(1-2 \frac{J}{\sqrt{\lambda}}\right)
$$

case of $a=\frac{1}{\sqrt{2}}$: "large" circular string with $J_{1}=J_{2}, J_{3}=0$ $\Delta_{J}=\sqrt{4 J^{2}+\lambda}$

$$
C_{123}=\frac{16}{3} \pi c_{\Delta} \frac{\sqrt{\lambda}}{\sqrt{4 J^{2}+\lambda}} \sim \sqrt{\lambda} \frac{\partial}{\partial \sqrt{\lambda}} \Delta_{J}
$$

similar observation made by Costa et al
V_{L} as singlet massive scalar
for "small" string with $\mathcal{J}_{1}=\mathcal{J}_{2} \equiv \mathcal{J}, \mathcal{J}_{3} \rightarrow 0, \kappa=\sqrt{2 \mathcal{J}}$

$$
C_{123} \sim(\sqrt{J})^{2 r-1} \sim\left(\Delta_{J}\right)^{2 r-1}
$$

again scales as power of level of the "light" string state
small $\mathcal{J}=\frac{J}{\sqrt{\lambda}}$ limit may be used to approximate string states with fixed quantum number J
e.g., $r=2$: first excited string level shed light on 3 -point functions involving Konishi operator?

Concluding remarks

- semiclassical approximation:
novel data for 3-point functions involving massive string states
- extension of semiclassical approach to 4-point functions
$\left\langle V_{H} V_{H} V_{L} V_{L}\right\rangle$ (in progress)
relevant example: all 4 states are chiral primary
[$0, \mathrm{p}, 0$] with arbitrary p [Uruchurtu 08]
- extensions to other states:
need to know vertex operators of $A d S_{5} \times S^{5}$ superstring
- hidden symmetries that control 3-point coupling? string field theory 3 -vertex for $\operatorname{AdS} S_{5} \times S^{5}$ superstring ?
- role of integrability?
relation to semiclassical approach [Alday, Maldacena, et al]
to open string correlators / Wilson loops?

