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Introduction

Gauge/gravity dualities have become an important
new tool in extracting strong coupling physics.
The best understood examples of such dualities
involve relativistic quantum field theories.
Strongly coupled non-relativistic QFTs are common
place in condensed matter physics and elsewhere.
It is natural to wonder whether holography can be
used to obtain new results about such non-relativistic
strongly interacting systems.
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The non-relativistic conformal group

In non-relativistic physics the Poincaré group is replaced
by the Galilean group. It consists of

the temporal translation H, spatial translations P i ,
rotationsMij , Galilean boosts Ki and the mass
operatorM.

The conformal extension adds to these generators

the non-relativistic scaling operator D and the
non-relativistic special conformal generator C.

The scaling symmetry acts as

t → λ2t , x i → λx i
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Schrödinger group

This is the maximal kinematical symmetry group of
the free Schrödinger equation [Niederer (1972)], hence
its name: Schrödinger group Sch(d).

Interacting systems that realize this symmetry include:

Non-relativistic particles interacting through an 1/r 2

potential.
Fermions at unitarity. (Fermions in three spatial
dimensions with interactions fine-tuned so that the
s-wave scattering saturates the unitarity bound).
This system has been realized in the lab using
trapped cold atoms [O’Hara et al (2002) ...] and has
created enormous interest.
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Holography for Schrödinger

Motivated by such applications [Son (2008)] and [K.
Balasubramanian, McGreevy (2008)] considered

ds2 = −b2du2

r 2z +
2dudv + dx idx i + dr 2

r 2 ,

When b = 0 this is the AdSd+1 metric.
For z = 2 this metric realizes geometrically the
Schrödinger group in (d − 1) dimensions.
In order for the mass operatorM to have discrete
eigenvalue lightcone coordinate v must be
compactified.
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Bulk system

This metric solves the field equations for e.g.

gravity coupled to massive vectors
topologically massive gravity (TMG) with µ = 3

In the latter case the solution is called "null warped AdS3"
and it was conjectured to be dual to a 2d CFT with certain
(cL, cR) [Anninos et al (2008)].

→ This is a rather different proposal for the physics of
the solution.
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The issues

These spacetimes are not asymptotically AdS and so
the usual holographic set up is not automatically
applicable.

Even basic issues such as

is the dual theory a local QFT?
what is the correspondence between bulk fields and
dual operators?

are not well understood.
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Results

The main results we find are:

The dual theory is a deformation of a d-dimensional
CFT.
The deformation is irrelevant w.r.t. relativistic
conformal group.
The deformation is exactly marginal w.r.t.
non-relativistic conformal group.
The theory is non-local in the v direction.
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The small b limit

In the small b limit the geometry is a small perturbation of
AdS and standard AdS/CFT applies.

Massive vector model:

SCFT → SCFT +

∫
ddx biXi

→ Xi has dimension (d + 1) and is dual to the bulk
vector field.

→ bi is a null vector with only non-zero component
bv = b.
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The small b limit

Topologically massive gravity:

SCFT → SCFT +

∫
d2x bijXij

→ Xij has dimension (3,1); it is related to the additional
boundary condition associated with the 3rd order
equations of TMG. (van Rees, Skenderis, M.T. 2009)

→ bij is a null tensor with only non-zero component
bvv = −b2.
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Schrödinger invariance

In both cases the non-relativistic scaling dimension of
the deformation is

∆s = d

and so the deformations are marginal wrt this scaling
symmetry!
Next we need to understand what happens at finite b.
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Finite b

Bulk perspective:
Schrödinger solutions solve the complete non-linear
equations.

→ The theory is Schrödinger invariant for any b.
Boundary QFT perspective:

We analyzed this question using conformal
perturbation theory.

→ The deforming operator is indeed exactly marginal
wrt Schrödinger.
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Exact marginality

To explain this computation we need a few facts about
theories with Schrödinger invariance:

Operators are labeled by their non-relativistic scaling
dimension, ∆s and their charge underM, the mass
operator.
In our context the mass operator is the lightcone
momentum kv .
Operators with different kv are considered as
independent operators.
In our case, the deforming operator has zero
lightcone momentum, kv = 0.
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Exact marginality

To prove that the operator is exactly marginal it suffices to
show that its 2-point function does not receive any
corrections when we turn on b.

〈Xv (kv =0,u1, x i
1)Xv (kv =0,u2, x i

2)〉b =

〈Xv (kv =0,u1, x i
1)Xv (kv =0,u2, x i

2)〉b=0

This can be studied using conformal perturbation theory.

Marika Taylor Holography for Schrödinger



Conformal perturbation theory
One can show that

〈Xv (kv )
n∏

i=1

bµ · Xµ(kv =0)Xv (−kv )〉CFT =

〈Xv (kv )Xv (−kv )〉CFT (bvkv )nf (log kv , ...)

where f (log kv , ...) is a dimensionless function that
depends at most polynomially on log kv .

Taking the limit kv → 0, establishes that Xv (kv =0) is
exactly marginal.
The dimensions of operators with kv 6= 0 receive
corrections,

∆s = ∆s(b = 0) +
∑
n>0

cn(bkv )n
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Summary

We started with a relativistic CFT and deformed it by
an irrelevant operator which is however marginal from
the perspective of the Schrödinger group.
We showed that the deformation is exactly marginal
and the deformation takes the theory from a
relativistic fixed point to a non-relativistic one.
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Summary

The question is then to understand the spectrum of
operators in the new fixed point.
We have seen that in the non-relativistic dimension
∆s of operators with kv 6= 0 changes as we go from
one fixed point to the other.
We will next analyze this question from the bulk
perspective.
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Probe scalar

Let us start by analyzing a probe scalar field in the
Schrödinger background,

S = −1
2

∫
d3x

√
−G
(
∂µΦ∂µΦ + m2Φ2

)
.

The field equations are

Φ̈ + 2Φ̇ + ζΦ− (m2 − b2∂2
v )Φ = 0

The asymptotics of the solution are

Φ = e(∆s−2)r
(
φ(0)(k) + . . . + e−(2∆s−2)rφ(2∆s−2)(k) + . . .

)
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Probe scalar

The dual operator has dimension

∆s = 1 +
√

1 + m2 + b2k2
v

For small b it takes the form we found earlier using
conformal perturbation theory

∆s = ∆s(b = 0) +
∑

cn(bkv )n

where ∆s(b = 0) = 1 +
√

1 + m2 is the standard
holographic formula for the dimension of a scalar
operator.
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Correlation functions

To compute correlation functions we need to compute
the on-shell value of the action.
This suffers from the infinite volume divergences.
Adapting holographic renormalization we find that we
need counterterms

Sct,∆s.3 = −1
2

∫
d2k

√
−ζ
(

(∆s − 2)Φ2 +
k2
ζ Φ2

2∆s − 4

)
When b = 0 these reduce to the counterterms for the
scalar field in AdS.
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Non-locality

Sct,∆s.3 = −1
2

∫
d2k

√
−ζ
(

(∆s − 2)Φ2 +
k2
ζ Φ2

2∆s − 4

)

Because ∆s depends on kv , the counterterms are not
polynomials in kv .
The theory is non-local in the v direction.
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2-point function

Having determined the counterterms, the 2-point
function can now extracted from an exact solution of
the linearized field equations1:

〈O∆s (u, kv )O∆s (0,−kv )〉 = c∆s,kv δ∆,∆su
−∆s ,

where c∆s,kv is a (specific) normalization factor.
This is precisely of the expected form for a 2-point
function of a Schrödinger invariant theory [Henkel
(1993)].

1Suppressing real-time issues considered in [Leigh-Hoang, Blau
et al (2009)]
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Gravitational sector

We now turn to the gravitational sector and discuss the
solutions to the linearized equations around the
background.

Both models (massive vector and TMG) admit two
distinct sets of solutions to the linearized equations.
The ‘T’ solutions are associated with the dual stress
energy tensor.
The ‘X’ solutions are associated with the dual
deforming operator.
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‘X’ solutions: TMG

The mode satisfies a hypergeometric equation.
The dimension of the dual operator is

∆s(Xvv ) = 1 +
√

1 + b2k2
v

This has the correct limit as b → 0.
The linearized solution is more singular at the
boundary than the Schrödinger background. This is
due to the fact that the operators with kv 6= 0 are
irrelevant.
The 2-point function takes the expected form.
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‘T’ solutions

The ‘T’ mode perturbations take the form:

hT
uu =

1
r 2 h(−2)uu + h̃(0)uu log(r 2) + h(0)uu + r 2h(2)uu

hT
uv =

1
r 2 h(−2)uv + h̃(0)uv log(r 2) + h(0)uv + r 2h(2)uv

hT
vv = h(0)vv + r 2h(2)vv ,

These modes at b = 0 reduce to the modes that
couple to the energy momentum tensor, Tij .
The solution is more singular than the Schrödinger
background. This is because ∆s(Tuu) = 4 and thus
this operator is irrelevant (from the perspective of
Schrödinger).
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Stress energy tensor

Subtleties in understanding this sector:

In a non-relativistic theory the tensor that contains
the conserved energy and momentum is not
symmetric and therefore cannot couple to any metric
mode.
This tensor couples instead to the vielbein→
formulate holography as a Dirichlet problem for the
vielbein.
Part of stress energy tensor is irrelevant, so source
must be treated perturbatively.

A long story....!
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Null dipole theory

[Maldacena et al (2008)] argued that the massive
vector model in d = 4 is dual to a null dipole theory, a
non-local deformation of N = 4 SYM.
In the null dipole theory, the ordinary product is
replaced by a non-commutative product that depends
on a null vector [Ganor et al (2000)]. Expressed in
terms of ordinary products the null dipole theory
contains terms that:

irrelevant from the relativistic CFT point of view
marginal from the Schrödinger perspective

→ This is in exact agreement with our findings.
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Conclusions

The dual to Schrödinger and "null warped" backgrounds is

a deformation of a d-dimensional CFT.
The deformation is irrelevant w.r.t. relativistic
conformal group.
The deformation is exactly marginal w.r.t.
non-relativistic conformal group.
The theory is non-local in the v direction.

Analogous story for dynamical exponents z 6= 2...
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Outlook

Very little is currently known about the null dipole
theories: is the divergence structure the same as we
found in gravity?
How does the dipole theory resum the series in b to
produce square roots ∆ = 1 +

√
1 + b2k2

v in operator
dimensions?
Understand better the stress energy sector and the
correct notion of asymptotically Schrödinger.
How does the anisotropic theory reproduce entropy
of warped AdS3 black holes? (Mysteriously, Cardy
formula used by Strominger worked even though dual
is not a CFT!)
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