Nonrenormalization theorems in extended supergravities

Conference on Gauge Theories and the Structure of Spacetime

Orthodox Academy of Crete, Kolymbarí September 16, 2010

K.S. Stelle

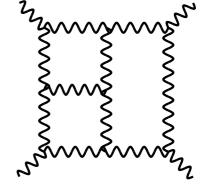
G. Bossard, P.S. Howe & K.S.S., arXív 0901.4661, 0908.3883 & 1009.0743 [hep-th]

Ultraviolet Divergences in Gravity
Simple power counting in gravity and supergravity

theories leads to a naïve degree of divergence

$$\Delta = (D-2)L+2$$

in D spacetime dimensions. So, for D=4, L=3, one expects $\Delta = 8$. In dimensional regularization, only logarithmic divergences are seen ($\frac{1}{\epsilon}$ poles, $\epsilon = D - 4$), so 8 powers of momentum would have to come out onto the external lines of such a diagram.



 Local supersymmetry implies that the pure curvature part of such a D=4, 3-loop divergence candidate must be built from the square of the Bel-Robinson tensor Deser, Kay & K.S.S

$$\int \sqrt{-g} T_{\mu\nu\rho\sigma} T^{\mu\nu\rho\sigma} , \quad T_{\mu\nu\rho\sigma} = R_{\mu\nu}^{\ \alpha\beta} R_{\rho\alpha\sigma\beta} + {}^*R_{\mu\nu}^{\ \alpha\beta} R_{\rho\alpha\sigma\beta}$$

• This is directly related to the α'^3 corrections in the superstring effective action, except that in the string context such contributions occur with finite coefficients. In string theory, the corresponding question is how poles might develop in $(\alpha')^{-1}$ as one takes the zeroslope limit $\alpha' \to 0$ and how this bears on the ultraviolet properties of the corresponding field theory. Berkovits; Green, Russo & Vanhove; cf talk by Michael Green

- The consequences of supersymmetry for the ultraviolet structure are not restricted to the requirement that counterterms be supersymmetric invariants.
- There exist more powerful "non-renormalization theorems," the most famous of which excludes infinite renormalization within D=4, N=1 supersymmetry of chiral invariants, given in N=1 superspace by integrals over half the superspace:

 $\int d^2 \Theta W(\phi(x, \Theta, \bar{\Theta})) , \quad \bar{D}\phi = 0$

 However, maximally extended SYM and supergravity theories do not have formalisms with all supersymmetries linearly realised "off-shell" in superspace. So the power of such nonrenormalization theorems is restricted to the offshell linearly realizable subalgebra.

- The full extent of a theory's "on-shell" supersymmetry, even though it may be non-linear, also restricts the infinities since the *leading* counterterms have to be invariant under the original unrenormalized supersymmetry transformations.
- Assuming that 1/2 supersymmetry is linearly realizable and requiring gauge and supersymmetry invariances, predictions were derived for the first divergent loop orders in maximal (N=4 ↔ 16 supercharge) SYM and (N=8 ↔ 32 sc.) SUGRA: Howe, K.S.S & Townsend

Max. SYM first divergences, assuming half SUSY off-shell (8 supercharges)

Dimension D	10	8	7	6	5	4
Loop order L	1	1	2	3	4	∞
Gen. form	$\partial^2 F^4$	F^4	$\partial^2 F^4$	$\partial^2 F^4$	F^4	finite

Max. SUGRA first divergences, assuming half SUSY off-shell (16 supercharges)

Dimension D	11	10	8	7	6	5	4
Loop order L	2	2	1	2	3	2	3
Gen. form	$\partial^{12} R^4$	$\partial^{10} R^4$	R^4	$\partial^4 R^4$	$\partial^6 R^4$	R^4	R^4

 When written in terms of the full on-shell supersymmetry, the F⁴ super Yang-Mills and the R⁴ supergravity candidates have similar "1/2 BPS structure". In their D=4 incarnations, they are Howe, K.S.S. & Townsend

 However, it now seems that such counterterm analysis in terms of BPS degree is incomplete. The calculational front has recently progressed remarkably.

Unitarity-based calculations

Bern, Carrasco, Díxon, Johansson & Roíban

- Using unitarity and dimensional regularization, there have been significant advances in the computation of loop corrections in the maximal supersymmetric cases.
- These have led to surprising cancellations at the 3- and 4loop orders, yielding new lowest possible orders for the super Yang-Mills and supergravity divergence onsets:

Max. SYM first dívergences, current lowest possíble orders.

Dimension D	10	8	7	6	5	4
Loop order L	1	1	2	3	6?	∞
BPS degree	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
Gen. form	$\partial^2 F^4$	F^4	$\partial^2 F^4$	$\partial^2 F^4$	$\partial^2 F^4$	finite

Red: known divergences

Max. supergravity first divergences, current lowest possible orders.

Dimension D	11	10	8	7	6	5	4
Loop order L	2	2	1	2	3	6?	5?
BPS degree	0	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	0	$\frac{1}{4}$
Gen. form	$\partial^{12} R^4$	$\partial^{10} R^4$	R^4	$\partial^6 R^4$	$\partial^6 R^4$	$\partial^{12} R^4$	$\partial^4 R^4$

Ectoplasm

Gates, Grísaru, Knut-Whelau, & Siegel Berkovits and Howe

- The construction of supersymmetric invariants is
 isomorphic to the construction of cohomologically nontrivial closed forms in superspace:
 - $I = \int_{M_0} \sigma^* \mathcal{L}_D$ is invariant (where σ^* is a pull-back to the "body" subspace M_0) if \mathcal{L}_D is a closed form in superspace, and is nonvanishing only if \mathcal{L}_D is nontrivial.
- Use the BRST formalism, treating all gauge symmetries including space-time diffeomorphisms with the nilpotent BRST operator s. The invariance condition for \mathcal{L}_D is $s\mathcal{L}_D + d_0\mathcal{L}_{D-1} = 0$, where d_0 is the usual bosonic exterior derivative. Since $s^2 = 0$ and s anticommutes with d_0 , one obtains $s\mathcal{L}_{D-1} + d_0\mathcal{L}_{D-2} = 0$, etc.

- Solving the BRST Ward identities thus becomes a cohomologícal problem. Note that the supersymmetry ghost is a commuting field. One needs to study the cohomology of the nilpotent operator $\delta = s + d_0$, whose cochains $\mathcal{L}_{D-q,q}$ are (D-q) forms with ghost number q, i.e. (D-q) forms with q spinor indices. The spinor indices are totally symmetric since the supersymmetry ghost is commuting.
- For gauge-invariant supersymmetric integrands, this establishes an isomorphism between the cohomology of closed forms in superspace (aka "ectoplasm") and the construction of BRST-invariant counterterms.

Superspace cohomology

- Flat superspace has a standard basis of invariant 1-forms $E^{a} = dx^{a} - \frac{i}{2}d\theta^{\alpha}(\Gamma^{a})_{\alpha\beta}\theta^{\beta}$
 - $E^{\alpha} = d\theta^{\alpha}$ dual to which are the superspace covariant derivatives (∂_a, D_{α})
- There is a natural bi-grading of superspace forms into even and odd parts: $\Omega^n = \bigoplus_{n=p+q} \Omega^{p,q}$
- Correspondingly, the flat superspace exterior derivative splits into three parts with bi-gradings (1,0), (0,1) & (-1,2): $d = d_0(1,0) + d_1(0,1) + t_0(-1,2)$ $\underset{d_0 \leftrightarrow \partial_{\mu} \qquad d_1 \leftrightarrow D_{\alpha}}{d_0 \leftrightarrow \partial_{\mu} \qquad d_1 \leftrightarrow D_{\alpha}}$ where for a (p,q) form in flat superspace, one has $(t_o \omega)_{a_2 \cdots a_p \beta_1 \cdots \beta_{q+2}} \sim (\Gamma^{a_1})_{(\beta_1 \beta_2} \omega_{a_1 \cdots a_p \beta_3 \cdots \beta_{q+2})}$

• The nilpotence of the total exterior derivative *d* implies the relations $t_{2}^{2} - 0$

$$t_0 d_1 + d_1 t_0 = 0$$

$$d_1^2 + t_0 d_0 + d_0 t_0 = 0$$

- Then, since $d\mathcal{L}_D = 0$, the lowest dimension nonvanishing cochain (or "generator") $\mathcal{L}_{D-q,q}$ must satisfy $t_0\mathcal{L}_{D-q,q} = 0$, so $\mathcal{L}_{D-q,q}$ belongs to the t_0 cohomology group $H_t^{D-q,q}$.
- Starting with the t_0 cohomology groups $H_t^{p,q}$, one then defines a spinorial exterior derivative d_s : $H_t^{p,q} \rightarrow H_t^{p,q+1}$ by $d_s[\omega] = [d_1\omega]$, where the [] brackets denote H_t classes.

- Cederwall, Gran, Nilsson & Tsimpis Howe & Tsimpis • One finds that d_s is nilpotent, $d_s^2 = 0$, and so one can define spinorial cohomology groups $H_s^{p,q} = H_{d_s}(H_t^{p,q})$. The groups $H_s^{0,q}$ give multipure spinors. This formalism gives a way to reformulate BRST cohomology in terms of spinorial cohomology. The lowest dímensíon cochaín, or generator, of a counterterm's superform will be d_s closed, *i.e.* it must be an element of $H_s^{D-q,q}$.
- Solving $d_s[\mathcal{L}_{D-q,q}] = 0$ allows one to solve for all the higher components of \mathcal{L}_D in terms of $\mathcal{L}_{D-q,q}$.

Cohomologícal non-renormalization

- Spinorial cohomology allows one to derive nonrenormalization theorems for counterterms: the cocycle structure of candidate counterterms must match that of the classical action.
 - For example, in maximal SYM, this leads to nonrenormalization theorems ruling out the F^4 counterterm otherwise expected at L=4 in D=5.
 - Similar non-renormalization theorems exist in supergravity, but their study is complicated by local supersymmetry and the density character of counterterm integrands.

Duality invariance constraints cfalso Broedel & Dixon

- Maximal supergravity has a series of duality symmetries which extend the automatic GL(11-D) symmetry obtained upon dimensional reduction from D=11, e.g. E₇ in the N=8, D=4 theory, with the 70 scalars taking their values in an E₇/SU(8) coset target space.
- The N=8, D=4 theory can be formulated in a manifestly $B_{DOSSard, Hillman & Nicolai}$ E_7 covariant (but non-manifestly Lorentz covariant) formalism. Anomalies for SU(8), and hence E_7 , cancel.
- Combining the requirement of continuous duality invariance with the spinorial cohomology requirements gives further restrictions on counterterms.

- In a curved superspace, an invariant is constructed from the top (pure "body") component in a coordinate basis: $I = \frac{1}{D!} \int d^D x \, \varepsilon^{m_D \dots m_1} E_{m_D}{}^{A_D} \dots E_{m_1}{}^{A_1} L_{A_1 \dots A_D}(x, \theta = 0)$.
- Referring this to a preferred "flat" basis and identifying E_M^A components with vielbeins and gravitinos, one has in D=4 $I = \frac{1}{24} \int (e^a_{\wedge} e^b_{\wedge} e^c_{\wedge} e^d_{~Labcd} + 4e^a_{\wedge} e^b_{\wedge} e^c_{\wedge} \psi^{\underline{\alpha}} L_{abc\underline{\alpha}} + 6e^a_{\wedge} e^b_{\wedge} \psi^{\underline{\alpha}} \psi^{\underline{\beta}} L_{ab\underline{\alpha}\underline{\beta}} + 4e^a_{\wedge} \psi^{\underline{\alpha}} \psi^{\underline{\beta}} \psi^{\underline{\gamma}} L_{a\alpha\beta\gamma} + \psi^{\underline{\alpha}} \psi^{\underline{\beta}} \psi^{\underline{\gamma}} \psi^{\underline{\delta}} L_{\alpha\beta\gamma\delta})$
 - Thus the "soul" components of the cocycle also contribute to the local supersymmetric covariantization.
- Since the gravitinos do not transform under the E₇ duality, the L_{ABCD} form components have to be separately duality invariant.

- At leading order, the E₇/SU(8) coset generators of E₇ simply produce constant shifts in the 70 scalar fields. This leads to a much easier check of invariance than analysing the full spinorial cohomology problem.
- Although the pure body (4,0) component L_{abcd} of the R^4 counterterm have long been known to be shift invariant at Howe, KSS & Townsend lowest order (since all 70 scalar fields are covered by derivatives), it is harder for the fermionic soul components to be so, since they are of lower dimension.
- Thus, one finds that the maxi-soul $(0,4) L_{\alpha\beta\gamma\delta}$ component is not invariant under constant shifts of the 70 scalars. Hence the D=4, N=8 3-loop 1/2 BPS R^4 counterterm is not E₇ duality invariant, so it is ruled out.

- Similar analysis of the D=4 3-loop R⁴ invariants in N=5 and N=6 supergravities shows them to be likewise ruled out by the analogous requirements of SU(5,1) and SO*(12) duality invariances.
- In N=6 supergravity, there is a 4-loop $\partial^2 R^4$ type invariant. Preliminary analysis indicates that this also is ruled out.
 - In maximal supergravity, such a $\Delta = 10$ invariant might have been expected at one loop in D=10. However, in maximal supergravity this invariant vanishes subject to the classical field equations. But in D=4, N=6 it does not vanish, so it could have been a threatening counterterm.

1/4 and 1/8 BPS counterterms in D=4 Application of the spinorial cohomology/duality analysis to the 1/4 $\partial^4 R^4$ and 1/8 BPS $\partial^6 R^4$ candidate counterterms in D=4, N=8 supergravity is possible, but incomplete. However, in the case of the maximal D=4 theory a different type of argument based on E_7 duality invariance is possible. Bossard, Howe & KSS (purely supergravity) Beisert, Elvang, Freedman, Kiermaier, Morales & Stiebeger • In fact, the existence of the 1/2 BPS L=1, D=8 R^4 , the 1/4 BPS L=2, D=7 $\partial^4 R^4$ and the 1/8 BPS L=3, D=6 $\partial^6 R^4$ divergences together with the uniqueness of the corresponding D=4 counterterm structures allows one to rule out the corresponding D=4 candidates.

- The existence of these D=8,7&6 divergences indicate that the corresponding forms of the R^4 , $\partial^4 R^4 \& \partial^6 R^4$ counterterms have to be such that the purely gravitational parts of these invariants are not dressed by e^{ϕ} dílatoníc factors – otherwise, they would violate the corresponding $SL(3,\mathbb{R}) \times SL(2,\mathbb{R})$, $SL(5,\mathbb{R})$ & SO(5,5)duality symmetries: lowest-order shift symmetries would be violated.
- Upon dimensional reduction to D=4, however, the Einstein-frame classical N=8 action is arranged to have no dilaton factors. But then the dimensional reductions of the R^4 , $\partial^4 R^4 \& \partial^6 R^4$ counterterms necessarily *do* have such dilaton factors.

- These dimensional reductions from D=8,7 & 6 do not directly have manifest SU(8) symmetry. But they can be rendered SU(8) invariant by averaging, *ie* by integrating the dimensionally reduced counterterms over
 - $SU(8)/(SO(3) \times SO(2))$, SU(8)/SO(5) or $SU(8)/(SO(5) \times SO(5))$.
 - Terms línear in dílatons ϕ are wiped out in such averaging, but $\phi \cdot \phi$ quadratic terms survive.
 - Consequently, the dimensionally reduced SU(8) invariant 1/2, 1/4 and 1/8 BPS R^4 , $\partial^4 R^4$ and $\partial^6 R^4$ N=8 counterterms all fail the test of lowest-order E₇ scalar shift symmetry.
 - Moreover, the D=4 1/2, 1/4 and 1/8 BPS counterterms are unique. So they fail the E7 duality test and are all ruled out.

Current outlook

• All of these discussions concern BPS candidate

counterterms, *ie* constrained expressions integrated over submanifolds of superspace. Non-BPS counterterms for the N=8 theory, given by full $\int d^{32}\theta$ integrals, start at $\Delta = 16$, corresponding to L=7 in D=4.

- The first such counterterm that is manifestly E_7 invariant is $\int d^{32}\theta(\det E)$, the volume of N=8 superspace.
- Current divergence expectations for maximal supergravity:

Dimension D	11	10	8	7	6	5	4
Loop order L	2	2	1	2	3	6	7
BPS degree	0	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	0	0
Gen. form	$\partial^{12} R^4$	$\partial^{10} R^4$	R^4	$\partial^6 R^4$	$\partial^6 R^4$	$\partial^{12} R^4$	$\partial^8 R^4$

Red: known divergences

Blue: anticipated divergences

counterterms for $L \ge 7$:

Howe & Lindstrom

Kallosh