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Ultraviolet Divergences in Gravity
Simple power counting in gravity and supergravity 
theories leads to a naïve degree of divergence 

in D spacetime dimensions. So, for D=4, L=3, one 
expects             . In dimensional regularization, only 
logarithmic divergences are seen (      poles,                     ), 
so 8 powers of momentum would have to come out onto 
the external lines of such a diagram.
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Figure 11. A sample diagram whose divergence
part would need to be evaluated in order to deter-
mine the ultra-violet divergence of a supergravity
theory. The lines represent graviton propagators
and the vertices three-graviton interactions.

ready been used to show that at least for the case
of maximally supersymmetric gravity the onset of
divergences is delayed until at least five quantum
loops [49,50].

4. STATUS OF LOOP CALCULATIONS

Before surveying the main advance since the
last ICHEP conference, it is useful to survey the
status of quantum loop calculations. Here we do
not discuss tree-level calculations which have also
seen considerable progress over the years.

4.1. Status of one-loop calculations
In 1948 Schwinger dealt with one-loop three-

point calculations [18] such as that of the anoma-
lous magnetic moment of leptons described in
Section 2. It did not take very long be-
fore Karplus and Neuman calculated light-by-
light scattering in QED in their seminal 1951
paper [51]. In 1979 Passarino and Veltman pre-
sented the first of many systematic algorithms for
dealing with one-loop calculations with up to four
external particles, leading to an entire subfield de-
voted to such calculations. Due to the complexity
of non-abelian gauge theories, however, it was not
until 1986 that the first purely QCD calculation
involving four external partons was carried out in
the work of Ellis and Sexton [52].

The first one-loop five-particle scattering am-
plitude was then calculated in 1993 by Lance
Dixon, David Kosower and myself [53] for the
case of five-gluon scattering in QCD. This was
followed by calculations of the other five-point
QCD subprocesses [54], with the associated phys-

ical predictions of three-jet events at hadron col-
liders appearing somewhat later [55,56]. A num-
ber of other five-point calculations have also been
completed. One example of a state-of-the-art five-
point calculation was presented in a parallel ses-
sion by Doreen Wackeroth [57], who described the
calculation of pp → t̄tH at next-to-leading order
in QCD [58]. This process is a useful mode for
discovering the Higgs boson as well as measure-
ment of its properties. Other examples are NLO
calculations for e+e− → 4 jets [59,60,61], Higgs
+ 2 jets [62], and vector boson + 2 jet produc-
tion [59,63], which is also important as a back-
ground to the Tevatron Higgs search, if the jets
are tagged as coming from b quarks.

Beyond five-external particles, the only calcu-
lations have been in special cases. By making
use of advanced methods, for special helicity con-
figurations of the particles, infinite sequences of
one-loop amplitudes with an arbitrary number
of external particles but special helicity configu-
rations have been obtained in a variety of the-
ories [39,40]. For the special case of maximal
supersymmetry, six-gluon scattering amplitudes
have been obtained for all helicities [40]. There
has also been a recent calculation of a six-point
amplitude in the Yukawa model [64], as well as re-
cent papers describing properties of six-point in-
tegrals [65]. These examples suggest that that the
technical know-how for computing general six-
point amplitudes is available, though it may be
a rather formidable task to carry it through. An
efficient computer program for dealing with up to
three jets at hadron colliders now exists [56], sug-
gesting that it would be possible add one more
jet, once the relevant scattering amplitudes are
calculated. This would then give a much bet-
ter theoretical handle on multi-jet production at
hadron colliders.

4.2. Status of Higher Loop Computations
Over the years, an intensive effort has gone

into calculating higher loop Feynman diagrams.
A few samples of some impressive multi-loop cal-
culations are:

• The anomalous magnetic moment of lep-
tons, already described in Section 2.
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Local supersymmetry implies that the pure curvature 
part of such a D=4, 3-loop divergence candidate must 
be built from the square of the Bel-Robinson tensor

This is directly related to the        corrections in the 
superstring effective action, except that in the string 
context such contributions occur with finite coefficients. 
In string theory, the corresponding question is how 
poles might develop in              as one takes the zero-
slope limit               and how this bears on the ultraviolet 
properties of the corresponding field theory.
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The consequences of supersymmetry for the ultraviolet 
structure are not restricted to  the requirement that 
counterterms be supersymmetric invariants.

There exist more powerful “non-renormalization theorems,” 
the most famous of which excludes infinite renormalization 
within D=4, N=1 supersymmetry of chiral invariants, given in 
N=1 superspace by integrals over half the superspace:

However, maximally extended SYM and supergravity 
theories do not have formalisms with all supersymmetries 
linearly realised “off-shell” in superspace. So the power of 
such nonrenormalization theorems is restricted to the off-
shell linearly realizable subalgebra.

Z
d2θW (φ(x,θ, θ̄)) , D̄φ = 0
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The full extent of a theory’s “on-shell” supersymmetry, even 
though it may be non-linear, also restricts the infinities since 
the leading counterterms have to be invariant under the 
original unrenormalized supersymmetry transformations.

Assuming that 1/2 supersymmetry is linearly realizable and 
requiring gauge and supersymmetry invariances, predictions 
were derived for the first divergent loop orders in maximal 
(N=4 ↔ 16 supercharge) SYM and (N=8 ↔ 32 sc.) SUGRA:

Max. SYM first divergences, 
assuming half SUSY off-shell 
(8 supercharges)

Max. SUGRA first divergences, 
assuming half SUSY off-shell 
(16 supercharges)

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 1 1 2 2 2 3
Gen. form ∂6R4 ∂2R4 R4 ∂6R4 ∂2R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

1

Howe, K.S.S & Townsend
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Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 2 3
Gen. form ∂12R4 ∂10R4 R4 ∂4R4 ∂6R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite
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When written in terms of the full on-shell 
supersymmetry, the       super Yang-Mills and the                  
supergravity candidates have similar “1/2 BPS 
structure”. In their D=4 incarnations, they are

However, it now seems that such counterterm analysis 
in terms of BPS degree is incomplete. The 
calculational front has recently progressed 
remarkably.

F 4 R4

∆ISG =
Z

(d8θd8θ̄)232848(W 4)232848
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&,, subject to the constraint (5.7). This constraint now implies the full non-linear 

field equations. Although the constraint on ~b~ i is non-linear, the constraint on the 

kernel remains linear because it has no free YM indices; this follows from the 

properties of covariant derivatives. Therefore,  the action (5.6) is an invariant. The 

off-shell action is still unknown; indeed, were we to relax the constraint on ~h~j to 

go off-shell, the action (5.6) would no longer be invariant. This suggests that no 

such off shell action exists in the absence of central charges. Other  arguments to 

this effect have previously been given in ref. [10]. 

As a warm up for N = 8 supergravity we will now consider an invariant quartic 

in ~b~ i. This is an on-shell counter term that can arise in gravity matter  systems. By 

using the special form of the action formula (4.6) we can construct the following 

invariant: 

f l'~[iil.lkt]lr~[pql.lr.*lt 
/" = d 4 x  ~ ~ L.ihkt.pq.rs , 

(5.8) 
t i i .k l .e , . rs  ~- (t~ii~kl~C)pqq~r~)ltl5 • 

The kernel is in the 105 representation of SU(4) and satisfies the required 

constraints as a consequence of (5.2): 

L-  ~ ; 0C- ~ .  (5.9) 

(ii) 8 > N >I 4 supergravity: for N = 4, 5 and 6 supergravity, (N = 7 actually has 

eight supersymmetries),  the on-shell theory is described by the complex superfield 

Wqkl which is in a totally antisymmetric representation of U(N),  and whose first 

components  are the physical scalars. They are subject to the constraints [11, 12] 

D, , iWik t , .  = 6(r~,.kt., 1, 

9, , ,  w,~,,,, = 9,~r, wi~,,~ ~, 
(5.10) 

which also imply the linearized field equations. The three loop counter term for 

these theories can be expressed as an action with a kernel of the form W 4, which 

contains the square of the BeI-Robinson tensor in its 0 expansion thus generalizing 

the result for N<~4 [13, 11, 5]. It is more convenient to use instead the spinor 

fields A,,~ik which also appear  in the superspace torsions of the full non-linear theories 

[11]. We can summarize the results by means of a single action formula 

I J 4  !'~1 ! .i i .i.~j.~r~ r...k I .k~12. kJ~  l 2 2 . . . . .  . . . .  ~] x l.J L.Iklll.k212.k313l~- ttll.1212.t313 (5.11) 

for which the kernel has the form, 

Kkf,~.ik~5"~'., '~ = ~,-rta~,,2,~--,,,,,2,~,,..~a ~t~ k,k2k~"~'d~+symmetrizations]. .  , . (5.12) 
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construct the N = 8 analogue of ( 5 . 8 ) :  

1" : f dax D[ir"i4]'[ir"i , t] l~lkt '"k4],[tr"14 ] 

>( t i  a...i4,h ...i4,k a ...k4,l l...14 • 

The kernel is 

Lil...i4dl.../4,kl...k4,tl...t 4 ~" ( Wil . . . i  4 Wjl.. . j4 Wkl . . . k  4 Wll. . .I  a )232848, 

and is in the 232848 representation of SU(8), 

L ~ 

(5.16) 

(5.17) 

The constraint to be satisfied by L, 

D L ~  

is guaranteed by the constraint (5.10) o n  Wiikl. An N = 8 three-loop counter term 

was previously constructed by Kallosh [5], but without manifest SU(8) invariance. 

An obvious question is now whether this counter term can be written in such a 

way that all scalars are covered by derivatives. Such a counter term is then a 

candidates for a linearized E(7) invariant counter term of the full non-linear theory 

[14]. Although the invariance W--* W + constant is not manifest in the way it was 

for N < 8 it is still there, as one can see by performing the 0 integrations (differenti- 

ations) in (5.16). The counter term is the square of the N = 8 Bel-Robinson superfield 

Bi~k~.~,., [15] 

Bqkl.pqr.* = ( Wijkl  Wpqrs ) 1764, ( 5 , 1 8 )  

which is in the 1764 representation of SU(8) 

13 ~ 

Therefore  on dimensional grounds the scalars must appear  in the x-space action 

in the form W2U]4W ~, (WDW)[]3(WDW), etc. By checking all such terms one 

can show that, up to total derivatives, all of them can be written such that the 

scalars appear  only as ~ W if the equations of motion are used. For example,  the term 

[( Wiikl  Wpqrs )1764r-[4 ( Wi' j 'k  'l' Wp,q,r,s, )176411 ( 5 . 1 9 )  

can be put in the form (c9 W) 4 by use of [] W = 0 and integration by parts. 

105 

232848 

φi j

Wi jkl

6 of SU(4)

70 of SU(8)

Howe, K.S.S. & Townsend
Kallosh
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Using unitarity and dimensional regularization, there have 
been significant advances in the computation of loop 
corrections in the maximal supersymmetric cases.

These have led to surprising cancellations at the 3- and 4-
loop orders, yielding new lowest possible orders for the 
super Yang-Mills and supergravity divergence onsets:

Unitarity-based calculations

Max. SYM first 
divergences, current lowest 
possible orders.

Max. supergravity first 
divergences, current lowest 
possible orders.

Bern, Carrasco, Dixon, 
Johansson & Roiban
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Red: known divergences

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 4 5
Gen. form ∂12R4 ∂10R4 R4 ∂4R4 ∂6R4 ∂6R4 ∂4R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6? ∞
BPS degree 1

4
1
2

1
4

1
4

1
4

1
4

Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 6? 5?

BPS degree 0 0 1
2

1
4

1
8 0 1

4

Gen. form ∂12R4 ∂10R4 R4 ∂6R4 ∂6R4 ∂12R4 ∂4R4

2

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 4 5
Gen. form ∂12R4 ∂10R4 R4 ∂4R4 ∂6R4 ∂6R4 ∂4R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6? ∞
BPS degree 1

4
1
2

1
4

1
4

1
4

1
4

Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 6? 5?

BPS degree 0 0 1
2

1
4

1
8 0 1

4

Gen. form ∂12R4 ∂10R4 R4 ∂6R4 ∂6R4 ∂12R4 ∂4R4
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The construction of supersymmetric invariants is 
isomorphic to the construction of cohomologically 
nontrivial closed forms in superspace:
                          is invariant (where     is a pull-back to the 
“body” subspace M0) if        is a closed form in superspace, 
and is nonvanishing only if       is nontrivial.

Use the BRST formalism, treating all gauge symmetries 
including space-time diffeomorphisms with the nilpotent 
BRST operator s. The invariance condition for        is
                                   ,  where      is the usual bosonic exterior 
derivative. Since              and s anticommutes with     , one 
obtains                                           , etc.                                 

Ectoplasm
Gates, Grisaru, Knut-Whelau, & Siegel
Berkovits and Howe
Bossard, Howe & KSS
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LD

LD

LD

d0

s2 = 0

I =
�

M0
σ∗LD σ∗

d0

sLD + d0LD−1 = 0

sLD−1 + d0LD−2 = 0



Solving the BRST Ward identities thus becomes a 
cohomological problem. Note that the supersymmetry 
ghost is a commuting field.  One needs to study the 
cohomology of the nilpotent operator                     , whose 
cochains                are (D-q) forms with ghost number q, i.e.
(D-q) forms with q spinor indices. The spinor indices are 
totally symmetric since the supersymmetry ghost is 
commuting.

For gauge-invariant supersymmetric integrands, this 
establishes an isomorphism between the cohomology of 
closed forms in superspace (aka “ectoplasm”) and the 
construction of BRST-invariant counterterms.

δ = s + d0

LD−q,q

9



Flat superspace has a standard basis of invariant 1-forms

dual to which are the superspace covariant derivatives

There is a natural bi-grading of superspace forms into even 
and odd parts:

Correspondingly, the flat superspace exterior derivative 
splits into three parts with bi-gradings (1,0), (0,1) & (-1,2):

where for a (p,q) form in flat superspace, one has

where for a (p,q) form in flat superspace, one has

Superspace cohomology

bosonic der. fermionic der. torsion
d = d0(1, 0) + d1(0, 1) + t0(−1, 2)

d0 ↔ ∂µ d1 ↔ Dα

10

Bonora, Pasti & Tonin

Ea = dxa − i

2
dθα(Γa)αβθβ

Eα = dθα

Ωn = ⊕n=p+qΩp,q

(toω)a2···apβ1···βq+2 ∼ (Γa1)(β1β2ωa1···apβ3···βq+2)



The nilpotence of the total exterior derivative d implies the 
relations

Then, since                 , the lowest dimension nonvanishing 
cochain (or “generator”)              must satisfy                          , 
so               belongs to the t0 cohomology group               . 

Starting with the t0 cohomology groups         , one then 
defines a spinorial exterior derivative
by                      , where the [ ] brackets denote Ht classes. 

11

t20 = 0
t0d1 + d1t0 = 0

d2
1 + t0d0 + d0t0 = 0

LD−q,q

dLD = 0

t0LD−q,q = 0

LD−q,q H
D−q,q
t

H
p,q
t

ds : H
p,q
t → H

p,q+1
t

ds[ω] = [d1ω]



One finds that ds is nilpotent,             , and so one can 
define spinorial cohomology groups                                 .

This formalism gives a way to reformulate BRST 
cohomology in terms of spinorial cohomology. The 
lowest dimension cochain, or generator, of a 
counterterm’s superform will be ds closed, i.e. it must be 
an element of                .

Solving                             allows one to solve for all the 
higher components of         in terms of              . 

H
p,q
s = Hds(H

p,q
t )

The groups            give multi pure spinors.H
0,q
s

12

H
D−q,q
s

ds[LD−q,q] = 0

LD LD−q,q

Cederwall, Gran, Nilsson & Tsimpis
Howe & Tsimpis

d2
s = 0



Spinorial cohomology allows one to derive non-
renormalization theorems for counterterms: the 
cocycle structure of candidate counterterms must 
match that of the classical action.

For example, in maximal SYM, this leads to non-
renormalization theorems ruling out the       
counterterm otherwise expected at L=4 in D=5.

Similar non-renormalization theorems exist in 
supergravity, but their study is complicated by 
local supersymmetry and the density character of 
counterterm integrands.

Cohomological non-renormalization

F 4

13



Duality invariance constraints
Maximal supergravity has a series of duality symmetries 
which extend the automatic GL(11-D) symmetry 
obtained upon dimensional reduction from D=11, e.g. E7 
in the N=8, D=4 theory, with the 70 scalars taking their 
values in an E7/SU(8) coset target space.

The N=8, D=4 theory can be formulated in a manifestly  
E7  covariant (but non-manifestly Lorentz covariant) 
formalism. Anomalies for SU(8), and hence E7, cancel.

Combining the requirement of continuous duality 
invariance with the spinorial cohomology requirements 
gives further restrictions on counterterms.

Marcus

Bossard, Hillman & Nicolai
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cf also Broedel & Dixon



In a curved superspace, an invariant is constructed from 
the top (pure “body”) component in a coordinate 
basis:                                                                                .

Referring this to a preferred “flat” basis and identifying        
components with vielbeins and gravitinos, one has in D=4

Thus the “soul” components of the cocycle also 
contribute to the local supersymmetric covariantization.

 Since the gravitinos do not transform under the E7  
duality, the LABCD form components have to be separately 
duality invariant.

15

rigid E7(7), the measure will be E7(7) invariant whereas the integrand will necessarily transform

non-trivially with respect to E7(7). It would then follow that the ∂6
R

4
invariant is not E7(7)

invariant, in agreement with the conclusion of the preceding section.

Note that this is not in contradiction with the existence of BPS duality invariants in higher

dimensions (such as R
4
in D = 8, ∂4

R
4
in D = 7 and ∂6

R
4
in D = 6), since the BPS invariants

are not unique in dimensions D > 5.

The non-existence of harmonic measures for the 1/2 and the 1/4 BPS invariants is not in

contradiction with the existence of these non-linear invariants in the full non-linear theory.

Indeed as we will discuss in the next section, not all supersymmetry invariants can be written

as harmonic superspace integrals, and some are only described in terms of closed super-D-form.

Non-linear consequences of linear invariants

A more general approach to the construction of superinvariants is afforded by the ectoplasm

formalism [28, 29, 30]. In D-dimensional spacetime, consider a closed super-D-form, LD, in the

corresponding superspace. The integral of the purely bosonic part of this form over spacetime

is then guaranteed to be supersymmetric by virtue of the closure property. Moreover, if LD is

exact it will clearly give a total derivative so that we are really interested in the Dth superspace

cohomology group. As we have seen in the preceding section, one cannot define a harmonic

measure for every invariant, and in particular, not for the 1/2 and 1/4 BPS invariants in N = 8

supergravity. However, according to the algebraic Poincaré Lemma, any supersymmetry invari-

ant necessarily defines a closed super-D-form.

In order to analyse superspace cohomology, it is convenient to split forms into their even and odd

parts. Thus a (p, q)-form is a form with p even and q odd indices, totally antisymmetric on the

former and totally symmetric on the latter. The exterior derivative can likewise be decomposed

into parts with different bi-degrees,

d = d0 + d1 + t0 + t1 , (13)

where the bi-degrees are (1, 0), (0, 1), (−1, 2) and (2,−1) respectively. So d0 and d1 are basically

even and odd derivatives, while t0 and t1 are algebraic. The former acts by contracting an even

index with the vector index on the dimension-zero torsion and then by symmetrising over all of

the odd indices. The equation d
2
= 0 also splits into various parts of which the most relevant

components are

t
2
0 = 0; d1t0 + t0d1 = 0; d

2
1 + t0d0 + d0t0 = 0 . (14)

The first of these equations allows us to define t0-cohomology groups, H
p,q
t [31], and the other two

allow us to introduce the spinorial derivative ds which maps H
p,q
t to H

p,q+1
t by ds[ωp,q] = [d1ωp,q],

where the brackets denote Ht cohomology classes, and which also squares to zero [32, 33].

The point of this is that one can often generate closed super-D-forms from elements of these

cohomology groups.

In the context of curved superspace it is important to note that the invariant is constructed

from the top component in a coordinate basis,

I =
1

D!

�
d
D
x εmD...m1 EmD

AD · · ·Em1
A1 LA1...AD(x, θ = 0) . (15)

6

One transforms to a preferred basis by means of the supervielbein EM
A. At θ = 0 we can

identify E
a
m with the spacetime vielbein em

a and Em
α with the gravitino field ψm

α (where α
includes both space-time α, α̇ and internal i indices for N = 8). In four dimensions, we therefore

have

I =
1

24

� �
e
a
∧e

b
∧e

c
∧e

d
Labcd + 4e

a
∧e

b
∧e

c
∧ψ

α
Labcα + 6e

a
∧e

b
∧ψ

α
∧ψ

β
Labαβ

+4e
a
∧ψ

α
∧ψ

β
∧ψ

γ
Laαβ γ + ψα

∧ψ
β
∧ψ

γ
∧ψ

δ
Lαβ γδ

�
. (16)

By definition, each component Labcd, Labcα, Labαβ , Laαβ γ , Lαβ γδ is supercovariant at θ = 0.

This is a useful formula because one can directly read off the invariant in components in this

basis.

In N = 8 supergravity, all the non-trivial t0-cohomology classes lie in Ht
0,4. Invariants are

therefore completely determined by their (0, 4) components Lαβ γδ, and all non-trivial L0,4 sat-

isfying [d1L0,4] = 0 in t0-cohomology define non-trivial invariants. Ht
0,4 is the set of functions

of fields in the symmetric tensor product of four 2 × 8 ⊕ 2 × 8 of SL(2,C) × SU(8) without

SU(8) contractions (since such functions would then be t0-exact). Because of the reducibility of

the representation, it will be convenient to decompose Lαβ γδ into components of degree (0, p, q)

(p+ q = 4) with p 2× 8 and q 2× 8 symmetrised indices.

We will classify the elements of Ht
0,4 into three generations.2 The first generation corresponds

to elements that lie in the antisymmetric product of four 2 × 8 ⊕ 2 × 8 of SL(2,C) × SU(8),

and can therefore be directly related to the top component L4,0 through the action of the

superderivatives. We will write M0,p,q for the corresponding components of a given L0,4. They

lie in the following irreducible representations of SL(2,C)× SU(8):

M0,4,0 : [0, 0|0200000]
M0,3,1 : [1, 1|1100001]
M0,2,2 : [2, 0|2000010]

M̄0,0,4 : [0, 0|0000020]
M̄0,1,3 : [1, 1|1000011]
M̄0,2,2 : [0, 2|0100002] .

(17)

In order to understand the constraints that these functions must satisfy in order for L0,4 to

satisfy the descent equation

[d1L0,4] = 0 , (18)

it is useful to look at the possible representations of d1L0,4 which define Ht
0,5 cohomology classes

in general, without assuming any à priori constraint. We will split d1 = d1,0 + d0,1 according to

the irreducible representations of SL(2,C)× SU(8). One computes that

[d1,0M0,4,0] : [1, 0|1200000]
[d0,1M0,4,0] : [0, 1|0200001]
[d1,0M0,3,1] : [0, 1|0200001]⊕ [2, 0|2100001]
[d0,1M0,3,1] : [1, 0|1100010]⊕ [1, 2|1100002]
[d1,0M0,2,2] : [1, 0|1100010]⊕ [3, 0|3000010]
[d0,1M0,2,2] : [2, 1|2000011]

[d0,1M̄0,0,4] : [0, 1|0000021]
[d1,0M̄0,0,4] : [1, 0|1000020]
[d0,1M̄0,1,3] : [1, 0|1000020]⊕ [0, 2|1000012]
[d1,0M̄0,3,1] : [0, 1|0100011]⊕ [2, 1|2000011]
[d0,1M̄0,2,2] : [0, 1|0100011]⊕ [0, 3|0100003]
[d1,0M̄0,2,2] : [1, 2|1100002] .

(19)

2We will avoid discussing the elements of Ht
0,4 of degree (0, 2, 2) in the [0, 0|0200020] representation, which do

not play any role.

7

One transforms to a preferred basis by means of the supervielbein EM
A. At θ = 0 we can

identify E
a
m with the spacetime vielbein em

a and Em
α with the gravitino field ψm

α (where α
includes both space-time α, α̇ and internal i indices for N = 8). In four dimensions, we therefore

have

I =
1

24

� �
e
a
∧e

b
∧e

c
∧e

d
Labcd + 4e

a
∧e

b
∧e

c
∧ψ

α
Labcα + 6e

a
∧e

b
∧ψ

α
∧ψ

β
Labαβ

+4e
a
∧ψ

α
∧ψ

β
∧ψ

γ
Laαβ γ + ψα

∧ψ
β
∧ψ

γ
∧ψ

δ
Lαβ γδ

�
. (16)

By definition, each component Labcd, Labcα, Labαβ , Laαβ γ , Lαβ γδ is supercovariant at θ = 0.

This is a useful formula because one can directly read off the invariant in components in this

basis.

In N = 8 supergravity, all the non-trivial t0-cohomology classes lie in Ht
0,4. Invariants are

therefore completely determined by their (0, 4) components Lαβ γδ, and all non-trivial L0,4 sat-

isfying [d1L0,4] = 0 in t0-cohomology define non-trivial invariants. Ht
0,4 is the set of functions

of fields in the symmetric tensor product of four 2 × 8 ⊕ 2 × 8 of SL(2,C) × SU(8) without

SU(8) contractions (since such functions would then be t0-exact). Because of the reducibility of

the representation, it will be convenient to decompose Lαβ γδ into components of degree (0, p, q)

(p+ q = 4) with p 2× 8 and q 2× 8 symmetrised indices.

We will classify the elements of Ht
0,4 into three generations.2 The first generation corresponds

to elements that lie in the antisymmetric product of four 2 × 8 ⊕ 2 × 8 of SL(2,C) × SU(8),

and can therefore be directly related to the top component L4,0 through the action of the

superderivatives. We will write M0,p,q for the corresponding components of a given L0,4. They

lie in the following irreducible representations of SL(2,C)× SU(8):

M0,4,0 : [0, 0|0200000]
M0,3,1 : [1, 1|1100001]
M0,2,2 : [2, 0|2000010]

M̄0,0,4 : [0, 0|0000020]
M̄0,1,3 : [1, 1|1000011]
M̄0,2,2 : [0, 2|0100002] .

(17)

In order to understand the constraints that these functions must satisfy in order for L0,4 to

satisfy the descent equation

[d1L0,4] = 0 , (18)

it is useful to look at the possible representations of d1L0,4 which define Ht
0,5 cohomology classes

in general, without assuming any à priori constraint. We will split d1 = d1,0 + d0,1 according to

the irreducible representations of SL(2,C)× SU(8). One computes that

[d1,0M0,4,0] : [1, 0|1200000]
[d0,1M0,4,0] : [0, 1|0200001]
[d1,0M0,3,1] : [0, 1|0200001]⊕ [2, 0|2100001]
[d0,1M0,3,1] : [1, 0|1100010]⊕ [1, 2|1100002]
[d1,0M0,2,2] : [1, 0|1100010]⊕ [3, 0|3000010]
[d0,1M0,2,2] : [2, 1|2000011]

[d0,1M̄0,0,4] : [0, 1|0000021]
[d1,0M̄0,0,4] : [1, 0|1000020]
[d0,1M̄0,1,3] : [1, 0|1000020]⊕ [0, 2|1000012]
[d1,0M̄0,3,1] : [0, 1|0100011]⊕ [2, 1|2000011]
[d0,1M̄0,2,2] : [0, 1|0100011]⊕ [0, 3|0100003]
[d1,0M̄0,2,2] : [1, 2|1100002] .

(19)

2We will avoid discussing the elements of Ht
0,4 of degree (0, 2, 2) in the [0, 0|0200020] representation, which do

not play any role.
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At leading order, the E7/SU(8) coset generators of E7 simply 
produce constant shifts in the 70 scalar fields. This leads to a 
much easier check of invariance than analysing the full 
spinorial cohomology problem.

Although the pure body (4,0) component            of the       
counterterm have long been known to be shift invariant at 
lowest order (since all 70 scalar fields are covered by 
derivatives), it is harder for the fermionic soul components to 
be so, since they are of lower dimension.

Thus, one finds that the maxi-soul (0,4)           component is 
not invariant under constant shifts of the 70 scalars. Hence 
the D=4, N=8 3-loop 1/2 BPS      counterterm is not E7 duality 
invariant, so it is ruled out. 16

Labcd R4

Howe, KSS & Townsend

Lαβγδ

R4

Bossard, Howe & KSS



Similar analysis of the D=4 3-loop       invariants in N=5 
and N=6 supergravities shows them to be likewise ruled 
out by the analogous requirements of SU(5,1) and    
SO*(12) duality invariances.

In N=6 supergravity, there is a 4-loop          type invariant. 
Preliminary analysis indicates that this also is ruled out.

In maximal supergravity, such a               invariant might 
have been expected at one loop in D=10. However, in 
maximal supergravity this invariant vanishes subject 
to the classical field equations. But in D=4, N=6 it 
does not vanish, so it could have been a threatening 
counterterm.

N=5, N=6
R4

∂2R4

∆ = 10

17



Application of the spinorial cohomology/duality 
analysis to the 1/4          and 1/8 BPS          candidate 
counterterms in D=4, N=8 supergravity is possible, 
but incomplete. However, in the case of the maximal 
D=4 theory a different type of argument based on E7 

duality invariance is possible.

In fact, the existence of the 1/2 BPS L=1, D=8     , the 
1/4 BPS L=2, D=7          and the 1/8 BPS L=3, D=6 
divergences together with the uniqueness of the 
corresponding D=4 counterterm structures allows 
one to rule out the corresponding D=4 candidates.

Elvang & Kiermaier (from IIA string theory)
Bossard, Howe & KSS (purely supergravity)
Beisert, Elvang, Freedman, Kiermaier, Morales & Stiebeger

1/4 and 1/8 BPS counterterms in D=4

∂4R4 ∂6R4

R4

∂4R4 ∂6R4

Drummond, Heslop, Howe & Kerstan
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The existence of these D=8, 7 & 6 divergences indicate 
that the corresponding forms of the                                 
counterterms have to be such that the purely 
gravitational parts of these invariants are not dressed by
      dilatonic factors – otherwise, they would violate the 
corresponding                                                                          
duality symmetries: lowest-order shift symmetries would 
be violated.

Upon dimensional reduction to D=4, however, the 
Einstein-frame classical N=8 action  is arranged to have 
no dilaton factors. But then the dimensional reductions 
of the                                 counterterms necessarily do have 
such dilaton factors.

R4, ∂4R4 & ∂6R4

eφ

SL(3,R)× SL(2,R), SL(5,R) & SO(5, 5)

R4, ∂4R4 & ∂6R4
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These dimensional reductions from D=8, 7 & 6 do not 
directly have manifest SU(8) symmetry. But they can be 
rendered SU(8) invariant by averaging, ie by integrating the 
dimensionally reduced counterterms over
                                      ,                        or                                        .

Terms linear in dilatons    are wiped out in such averaging, 
but          quadratic terms survive.

Consequently, the dimensionally reduced SU(8) invariant  
1/2, 1/4 and 1/8 BPS                  and          N=8 counterterms 
all fail the test of lowest-order E7 scalar shift symmetry.

Moreover, the D=4 1/2, 1/4 and 1/8 BPS counterterms 
are unique. So they fail the E7 duality test and are all 
ruled out.

SU(8)/(SO(3)× SO(2)) SU(8)/SO(5) SU(8)/(SO(5)× SO(5))

φ

φ · φ

R4, ∂4R4 ∂6R4
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All of these discussions concern BPS candidate 
counterterms, ie constrained expressions integrated over 
submanifolds of superspace. Non-BPS counterterms for 
the N=8 theory, given by full            integrals, start 
at               , corresponding to L=7 in D=4.

The first such counterterm that is manifestly E7 

invariant is                    , the volume of N=8 superspace.

Current divergence expectations for maximal 
supergravity:

Current outlook

∆ = 16

�
d32θ

�
d32θ(detE)

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 4 5
Gen. form ∂12R4 ∂10R4 R4 ∂4R4 ∂6R4 ∂6R4 ∂4R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6? ∞
BPS degree 1

4
1
2

1
4

1
4

1
4

1
4

Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 6 7

BPS degree 0 0 1
2

1
4

1
8 0 0

Gen. form ∂12R4 ∂10R4 R4 ∂6R4 ∂6R4 ∂12R4 ∂8R4

2

Red: known divergences Blue: anticipated divergences 21

E7 full superspace 
counterterms for L≥7:
Howe & Lindstrom
Kallosh


