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• Our most promising candidates for providing a consistent the-
ory of quantum gravity, and for unifying all the fundamental
forces in nature, begin life in higher dimensions; superstrings
in D = 10 and M-Theory in D = 11.

• For phenomenological reasons (we only perceive four space-
time dimensions), and for more abstract theoretical reasons
(e.g. the AdS/CFT correspondence), it is important to be
able to perform dimensional reductions to give lower-dimensional
theories from the D = 10 or D = 11 starting points.

• The key idea for how to do this was conceived by Theodor
Kaluza, in 1926. The idea was refined by Oskar Klein in the
1930’s and is now known as Kaluza-Klein Reduction.

• In its original form, Kaluza’s reduction amounted to taking
a five-dimensional theory (Einstein gravity), with coordinates
xM = (xµ, y), (M = 0,1,2,3,4, µ = 0,1,2,3), and then as-
suming that the five-dimensional fields were independent of
the fifth coordinate y. (i.e. ∂/∂y is a Killing vector.)

• Klein added the physically-motivated notion that the fifth
dimension should be wrapped up into a circle of small radius
L, in order to account for its non-observability.

• Reduction of D = 5 Einstein gravity yields 4-dimensional
Einstein-Maxwell gravity with a scalar field. The U(1) gauge
transformation of Aµ is associated with general-coordinate
transformations y −→ y + ξ(xµ) on the circle.



• The generalisation to reduction on an n-dimensional torus
(product of circles) is immediate. This torus is called the
Internal Space. Its U(1)n isometry implies U(1)n gauge fields
in the lower dimension.

• Pauli, in 1953, was the first to suggest generalising the Kaluza-
Klein idea to a reduction on a curved internal space, in order
to get nonabelian gauge fields. His idea was to reduce six-
dimensional Einstein gravity to four dimensions, by using a
small 2-dimensional sphere as the internal space. Its SO(3)
isometry would imply SO(3) gauge fields (Yang-Mills) in four
dimensions. He also realised that this wouldn’t work (i.e it is
inconsistent).

• Ten years later, in 1963, DeWitt observed that non-abelian
gauge fields could be obtained by reduction on a group man-
ifold G. This has G×G isometry, but by only asking for the
gauge fields of one copy of G, the reduction procedure is
guaranteed to be consistent. DeWitt’s idea is clever, but not
subtle.

• This talk is going to describe how supergravity has found
a very subtle way to solve Pauli’s original problem. But, it
requires delicate “conspiracies,” and even small changes can
be risky...



Reduction on S1

Consider a free massless scalar in D + 1 dimensions, satisfying
�̂φ̂(xµ, y) = 0. Fourier expanding on the circle 0 ≤ y ≤ 2πL, i.e.
φ̂(x, y) =

∑
n φn(x)einy/L, implies the D-dimensional fields φn have

masses m2 = n2/L2:

�φn −
n2

L2
φn = 0 .

One massless field φ0 plus an infinite tower of massive fields. The
usual Kaluza-Klein idea is to truncate to the massless sector.

For gravity, we Fourier expand ĝMN(x, y). Essentially, this gives

towers of spin-2, spin-1 and spin-0 fields g
(n)
µν (x), g

(n)
µy (x) and

g
(n)
yy (x), which are massive except for the n = 0 modes.

Actually, in the massless truncation, a nicer way to parameterise
the metric is

dŝ2 = e2φ gµν(x)dxµdxν + e−2(D−2)φ (dy −Aµdxµ)2 .

The (D+ 1)-dimensional Einstein-Hilbert Lagrangian L̂ =
√
−ĝR̂

reduces to give the D-dimensional Lagrangian

L =
√
−g
(
R− (D − 1)(D − 2)(∂φ)2 − 1

4e
−2(D−1)φFµνFµν

)
.



Kaluza-Klein Consistency

• A crucial point in the S1 reduction is that it is consistent to
truncate out the infinite towers of massive fields.

• Imagine substituting the full Fourier mode expansions into the
(highly non-linear) (D + 1)-dimensional Einstein equations.
The general form of the equation of motion for a field Φ(n)(x)
in the expansions will be

�Φ(n) −
n2

L2
Φ(n) =

∑
p

Φ(n+p)Φ(−p) +
∑
p,q

Φ(n+p+q)Φ(−p)Φ(−q) + · · ·

• To be able to set a given field Φ(n) to zero, there must be no
source terms on the RHS that could force it to be non-zero.

• If we make a truncation to set all fields Φ(n) with n 6= 0
to zero, and keep all fields with n = 0, then consistency is
guaranteed.

• In other words, massless fields (uncharged under U(1)) cannot
act as sources for massive fields (charged under U(1)).

• A equivalent way to define a Consistent Truncation is one for
which any solution of the lower-dimensional theory lifts back
to a solution of the higher-dimensional theory.



DeWitt Reduction

Here, the higher-dimensional theory is reduced on a compact
group manifold G. Has isometry group G×G. We denote this by
GL ×GR, with GL, GR acting on the left and the right:

g −→ gL g gR .

We now make a generalised Fourier expansion of the higher-
dimensional fields in terms of complete sets of harmonics on G.
In the lower dimension, the massless fields will therefore include
the Yang-Mills gauge bosons of GL ×GR.

In general, a truncation that retains all the GL×GR gauge bosons
will be inconsistent (but see later). By contrast, in the DeWitt
reduction, only the gauge bosons of one copy of G, say GR, are
retained in the truncation.

To be precise, in the DeWitt reduction, the ony fields that are
retained are the full set of fields that are singlets under GL.

This is manifestly a consistent reduction: non-linear products of
GL singlets cannot act as sources for GL non-singlets.

Because GL acts transitively on the group manifold G, there will
only be a finite number of fields in the truncation. From the
higher-dimensional metric, we get the metric, GR gauge bosons,
and a certain set of scalar fields.



Pauli Reduction

Now let’s consider a Pauli Reduction, where the internal space is
taken to be a coset manifold G/H, such as the n-sphere, which is
SO(n+1)/SO(n). Reductions of this type are the most important
in string theory and M-theory; for example type IIB reduced on
S5, or M-theory reduced on S7.

In general, Pauli reductions don’t work. Only in very special
cases, because of remarkable conspiracies between the properties
of the higher-dimensional theory, and harmonics on the sphere.

To see the problem in general, consider the example of Einstein
gravity. The relevant terms in the metric reduction ansatz:

dŝ2 = gµν(x)dxµdxν + gmn(y)(dym −Km
I A

I
µdx

µ)(dyn −Kn
JA

J
νdx

ν)

where gmn is the metric on the coset space G/H, Km
I are the

Killing vectors of the isometry group G, and AIµ are the Yang-
Mills gauge potentials for the group G.

The problem shows up in the lower-dimensional components of
the higher-dimensional Einstein equation, which give:

Rµν − 1
2Rgµν = 1

2K
m
I KmJ(F IµρF

J
ν
ρ − 1

4F
I
ρσF

Jρσgµν)

This would be fine if Km
I KmJ was equal to δIJ. But it isn’t...



Pauli’s Problem

Take Pauli’s example of S2 = SO(3)/SO(2) reduction. We have
three Killing vectors of SO(3), on the two-dimensional sphere.
So

YIJ ≡ Km
I KmJ

is a 3× 3 matrix of rank 2, so it cannot possibly be δIJ.

Much worse than this, YIJ is not constant: it depends on the
coordinates ym of S2. So the “Einstein equation” in the lower
dimension is inconsistent: the “energy-momentum tensor” of the
gauge fields depends on the coordinates of the compactifying
sphere.

What is really happening is that the G gauge bosons are trying
to act as sources not only for the usual massless graviton that we
are keeping in the Pauli reduction, but also for certain massive
gravitons that we wanted to truncate away. Thus the truncation
is an inconsistent one.

The same problem generically arises for any choice of coset space
G/H.

One of the seemingly attractive advantages of Pauli over De-
Witt, namely G gauge bosons from only dim(G)− dim(H) extra
dimensions, rather than dim(G), is actually part of its downfall.



Supergravity Rescues Pauli

We illustrated the key “Pauli Problem” with a pure gravity ex-
ample, but it would arise in just the same way in the reduction
of any generic theory. Supergravities, however, are rather spe-
cial, and sometimes they can conspire to solve the consistency
problem.

Consider type IIB supergravity compactified on S5 = SO(6)/SO(5).
Actually, we need only consider the metric and self-dual 5-form:

R̂MN = 1
96ĤMPQRSĤN

PQRS , Ĥ5 = ∗̂Ĥ5 , dĤ5 = 0

As well as the previous metric reduction ansatz, we now need

Ĥ5 = (1l + ∗̂)(4g ε5 −
1

2g
∗F I ∧ dKI)

This gives an extra contribution on the RHS of the Einstein
equation, so

Rµν − 1
2Rgµν − 2g2gµν = 1

2YIJ(F IµρF
J
ν
ρ − 1

4F
I
ρσF

Jρσgµν)

where now

YIJ = Km
I KmJ +

1

2g2
(∇[mK

n]
I )(∇[mKn]J)

YIJ is a 15 × 15 matrix of rank 5 + 10 = 15, and it is constant,
and hence with appropriate scalings YIJ = δIJ. Pauli lives!



Consistency of Supergravity Pauli Reductions

• The “Killing vector conspiracy” is one necessary condition for
being able to perform a consistent Pauli reduction. Almost
all Pauli reductions will fail the test. If a particular example,
such as type IIB supergravity reduced on S5 passes the test,
there are still many more hurdles before one can claim to
have proven the consistency of the reduction.

• (Note that when examining the Killing vector conspiracy, we
omitted, for simplicity, certain scalar fields that must be in-
cluded for full consistency. The crucial point is that the
particular consistency test we were applying would not be
affected by including the scalars.)

• There are very strong indications that we can in fact obtain
five-dimensional N = 8 gauged SO(6) supergravity by the S5

reduction. But there is no complete proof, and there is little
understanding of why it should work.

• Consistency of the S7 reduction of D = 11 supergravity is
essentially proved, but why it works is equally mysterious.

• A very few other examples of consistent Pauli reductions are
known: S4 reduction of D = 11 supergravity; S2 reduction of
D = 6 Salam-Sezgin supergravity; reduction of bosonic string
theory on group manifold G, keeping all the GL × GR gauge
bosons.



Pauli Reduction with Breathing Mode?

• Since we don’t understand why Pauli reductions (occasion-
ally) work, it could be of interest to try modifying, or ex-
tending, the rare examples that do work, to see if any further
remarkable conspiracies can take place.

• It was recently suggested by Gauntlett, Kim, Varela and Wal-
dram that it might be possible to extend the consistent S5 or
S7 reductions to maximal gauged D = 5 or D = 4 supergrav-
ity by adding certain massive N = 8 supermultiplets, including
the one containing the breathing mode of the sphere. (The
scalar field parameterising the overall volume factor.)

• This would be remarkable, if true, and would provide a counter-
example to standard gravity “lore” that one cannot have a
consistent coupling of massive spin-2 fields to gravity.

• The motivation GKVW provided for this proposal can be de-
scribed as follows. The SO(6) isometry group of S5 has an
SU(3) subgroup that still acts transitively on S5. Take the
infinite towers of SO(6) modes in the full S5 harmonic ex-
pansions, and truncate to all the singlets under SU(3). This
gives an N = 2 gauged supergravity in D = 5, coupled to a
finite number of fields including the breathing mode. (This
reduction, however, is guaranteed by group theory to be con-
sistent, and does not require any miracles.)



Breathing Mode Destroys Pauli Consistency

It is nevertheless interesting to see what happens if we add in
the breathing mode in the previous Pauli reduction. The metric
ansatz is now

dŝ2 = e5φgµν(x)dxµdxν

+e−3φgmn(y)(dym −Km
I A

I
µdx

µ)(dyn −Kn
JA

J
νdx

ν)

For the 5-form, consistency with the Bianchi identity requires

Ĥ5 = (1l + ∗̂)(4ge20φε5 −
1

2g
e4φ∗F I ∧ dKI)

The five-dimensional components of the ten-dimensional Einstein
equation now imply

Rµν − 1
2Rgµν − 2g2gµν = 1

2WIJ(F IµρF
J
ν
ρ − 1

4F
I
ρσF

Jρσgµν)

where

WIJ = e−8φKm
I KmJ +

1

2g2
e4φ (∇[mK

n]
I )(∇[mKn]J)

In the absence of the breathing mode (i.e. φ = 0), the y depen-
dence of the first term cancels that of the second, yielding just
δIJ. But now, when φ 6= 0, the y dependence fails to cancel, and
we have an inconsistency.



What Have We Learned?

• The original Kaluza-Klein idea, of reduction on a circle, pro-
vides a powerful tool for consistent dimensional reduction,
and is guaranteed to work. Solutions of the lower-dimensional
theory can always be lifted back as solutions in the higher di-
mension.

• The extension to reduction on an n-torus is immediate. De-
Witt extended the idea further, by taking the internal space
to be any compact group manifold G. Although the isometry
group is GL × GR, in the DeWitt reduction only fields that
are singlets under GL are retained. In particular, this means
keeping just the non-abelian gauge bosons of GR. The con-
sistency of the DeWitt reduction is trivially guaranteed by
group theory.

• The highly non-trivial Pauli reductions in supergravity, such
as the S5 reduction of type IIB, are much more interesting
because they are totally mysterious. We have very little un-
derstanding of why they work.

• The consistent Pauli reductions are very delicate, and any
modifications or extensions seem likely to destroy the consis-
tency. We examined one particular example, and showed that
a proposal to add the breathing mode in the reduction ren-
ders the S5 Pauli reduction inconsistent. (The same happens
in the S7 reduction of D = 11 supergravity.)


