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Introduction and Summary

CFT duals of theories with Einstein-Hilbert gravity in
AdS5 necessarily havea = c. Higher derivative
gravities lift this restriction. Will considerLovelock
gravities with Λ < 0, which give rise to CFTs.

In these CFTs〈TabTcdTef〉 satisfy a constraint which
follows from the superconformal Ward identity.
Moreover,acasual propagationat finiteT is equivalent
to the violation of theenergy fluxpositivity.

One can use it as a starting point to show that energy
flux positivity = ghost free CFT
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Outline

• Lovelock gravities, black holes and graviton
propagation. Acasual propagation in CFT at
T > 0.

• Energy flux in CFTs.
• Computing energy flux in CFTs dual to Lovelock

gravities. Holographic Weyl anomaly and〈TTT 〉
3-point function.

• Conformal field theory. Energy flux positivity =
no ghosts in CFTs.

• Conclusions.
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Lovelock gravities

Gauss-Bonnet gravity Lagrangian:

L = R +
6

L2
+ λL2(R2−4RabR

ab+RabcdR
abcd)

We will be interested in theλ ∼ 1 regime.

More generally, we can add termsO(Rk) which are
Euler densities in2k dimensions:

λkL
2k−2δa1...bk

c1...dk
Rc1d1

a1b1
. . . Rckdk

akbk

They become non-trivial for gravity theories inAdSD

with D > 2k.
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Lovelock gravities

Special properties of Lovelock gravities
• Equations of motion don’t contain 3rd order

derivativesg′′′

• Metric and Palatini formulations are equivalent
• No ghosts around flat space
• Exact black hole solutions can be found

The last property allows one to study dual CFTs at
finite temperature.
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Small fluctuations
Consider propagation of gravitons in the black hole
background.(D=5 Gauss-Bonnet: Brigante, Liu, Myers, Shenker,

Yaida)

ds2=−f(r)

α
dt2+

dr2

f(r)
+

r2

L2

(

∑

dx2
i +2φ(t, r, z)dx1dx2

Fourier transform:
φ(t, r, z) =

∫

dwdqexp(−iwt + iqz)
After substitutions and coordinate transformations,
get Schrodinger equation with~ → 1/q̃ = T/q:

− 1

q̃2
∂2

yΨ(y) + V (y)Ψ(y) =
w2

q2
Ψ(y)
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Small fluctuations
Spectrum = states in finite T CFT.
In the q̃ � 1 regime, there are stable states with
∂w/∂q > 1 in some region of the parameter space.
Causality places constraints on Lovelock couplings:

∑

k

[(d − 2)(d − 3) + 2d(k − 1)]λkα
k−1 < 0

whereα defines the AdS radiusL2
AdS = L2/α and

satisfies
∑

k λkα
k = 0.

This effect is absent atT = 0; appears asO(T/q)
correction from the tails of black hole metric.
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Energy flux in CFT

Defineε(n̂) = limr→∞ r2
∫

dtT 0
i n̂i

Conjecture(Hofman, Maldacena)〈ε(n̂)〉 ≥ 0.
Consider a state created byεijTij

〈ε(n̂)〉∼1+t2(
εijε

iln̂jn̂l

εijεij
− 1

d−1
)+t4(

(εijn̂in̂j)
2

εijεij
− 2

d2−1
)

t2 andt4 are determined by the 2 and 3-point
functions ofTab.

Fact: (Osborn, Petkou)〈TT 〉 and〈TTT 〉 in CFTs are
completely determined by 3 parametersa, b, c.
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Computation of 〈TTT 〉 in Love-
lock gravity duals

We compute〈TTT 〉 by computing holographic Weyl
anomaly ind = 6 CFT. Under Weyl rescaling,
g → e2σg, action of CFT in curved space is not
invariant:δσS =

√
det gAWσ

AW = (Euler density) + (B − type terms) + ∇iJ
i

Fact: (Bastianelli, Frolov, Tseytlin)B-type terms are related to
2, . . . , d/2 + 1 point functions ofTab. In d = 6 B-type
anomaly isb1I1 + b2I2 + b3I3 whereIi ∼ R3. Can
construct the linear map
(b1, b2, b3) ↔ (n1, n2, n3) ↔ (a, b, c)
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Computation of b1, b2, b3

Holographic Weyl anomaly(Henningson, Skenderis)

ds2 = L2
AdS

(

dt2

4ρ2
+

gij

ρ
dxidxj

)

gij = g
(0)
ij + ρg

(1)
ij + ρ2g

(2)
ij + . . . Procedure: solve

Lovelock EOMs, findg(1)
ij andg

(2)
ij as functions ofg(0)

ij ,
substitute into the Lovelock action and extract1/ρ
term. Did this for cubic LovelockR2

abcd, R
3
abcd.

Results:t4 = 0, constraints on Lovelock parameters
from flux positivity are the same as those from
causality at finiteT . Also holds in GB in any dimensions: Myers et
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Comments

• Superconformal Ward identity impliest4 = 0.
This is the case in Lovelock theory. Similar to
a = c in Einstein-Hilbert gravity (which was
required byN = 4 SUSY)

• The exact matching between the causality and
flux positivity constraints in Lovelock theories
hints at their special role in AdS/CFT.

• Both causality and flux positivity constraints
involve UV physics. We will see below that the
most singular term in theTT OPE is responsible
for this.
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CFT
Consider theTT OPE(Osborn, Petkou)

Tab(x)Tcd(0) ∼
CTIab,cd(x)

x2d
+ Âabcdαβ(x)Tαβ(0) + . . .

Take an expectation value of both sides and Fourier
transform to arrive at two-point function. Zero
temperature result comes from the first term:

Gab,cd(k) ∼ k4 log k2

(index structure is completely fixed by Ward
identities)

At finite temperature〈Tαβ〉 = Cdiag[3, 1, 1, 1]T 4
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CFT
TT ∼ T term in the OPE givesO(T 4/q4) correction,
denoted byGab,cd(k)T . But this correction contains a
pole! For example,

G12,12(k)T = Ct

w2 + q2

w2 − q2

whereCt = −5(7a+2b−c)/(14a−2b−5c) is precisely

the quantity which must stay positive for the energy

flux to remain positive!

Negative residue = ghost state.
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CFT

1+t2(
εijε

iln̂jn̂l

εijεij
−1

3
)+t4(

(εijn̂in̂j)
2

εijεij
− 2

15
) ≥ 0

implies 3 inequalities: [forεij being tensor, vector or
scalar with respect to residual SO(2)]
Ct, Cv, Cs ≥ 0.
Was matched to causality of 3 independent channels
in Gab,cd(k)T in gravity (Buchel, Myers; Hofman)

UsingTT OPE, the poles in 3 independent channels
in Gab,cd(k)T are shown to be equal toCt, Cv, Cs.
Energy flux positivity = absence of ghosts
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Comments
• True for any state that leads to〈Tab〉 6= 0

• In theories whose operator content consists ofTab

nothing can spoil the correspondence.
Presumably the case for Lovelock duals.
Tachyons are also ghosts (would be nice to verify
directly).

• Lightlike poles from the OPE. Generally expect
thinly spaced quasinormal poles:w = q − inT ,
which form a continuum in theq/T → ∞ limit.
Presumably CFT computation observes the lower
edge of this continuum. Less singular terms in
the OPE are down by powers ofT/q.
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More comments
Correpondence can be possibly spoiled by relevant
and marginal operators whose VEV violates Lorentz
invariance.

• Scalars give rise toT∆q2(2−∆

2
) and do not

contribute to the poles.

• Vector:V 0 = 0

• The only possible complication may come from
the conserved traceless symmetric spin-2
operator, other thanTab. Does the theory
decouple into the sum of noninteracting CFTs?
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Conclusions/Summary
• Exact correspondence between the positivity of

energy flux and causality in Lovelock duals.
• 3-point functions satisfy constraint which follows

from supersymmetry.
• CFT result: this is no surprise; these tachyons

must also be ghosts.
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