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Motivation

Holographic plasmas as toy models for QCD plasmas
Why we want to include “quarks"

What do we look for?
Solutions duals to plasmas with fundamental matter

Deconfined plasma = presence of black hole horizon

Why?

Question: in what is different the N = 4 SYM plasma (or any other
for which we have a dual solution) from the QCD plasma?
Answer: in several features, but . . .
. . . the absence of fundamental matter is a prominent one among
them
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AdS/CFT with fundamental matter

Flavor Branes Introduce Fundamental Matter
Karch, Katz (02), . . .

Nc D3s gluons H3-3L

glueballs

mesons H7-7Lquarks H3-7L

N f D7s

open-closed

open-open

N f D7s
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AdS/CFT with fundamental matter

Unquenched Flavors = Flavor Brane Backreaction

Quenched quarks:
Those for which we neglect their quantum effects
In AdS/CFT, we neglect backreaction on the background

We are interested in unquenched quarks:
Why? Because we want to know how they affect the physics of the
plasma
How? We must look for a solution coupled to D7-brane sources
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AdS/CFT with fundamental matter

Unquenched and Smeared
Bigazzi, Casero, Cotrone, Kiritsis, Paredes (05)

Technical trick: we will consider a set-up in which the flavor branes
are homogeneously smeared.

This corresponds to a particular (symmetry restoring) way of
coupling the fundamental matter to the adjoint fields

A few flavor branes

D3s

D7

Many flavor branes The black hole
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The solution dual to the D3D7 QGP

What we look for: a solution of type IIB string theory

We need a deformation of AdS5 × S5 with:

Backreaction of Nf D7 flavor branes
A black hole horizon

Note: It can be easily generalized to AdS5 × X 5
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The solution dual to the D3D7 QGP

The action
Defining the problem

We look for solutions of IIB sugra coupled to (flavor) D7 sources
S = SIIB + Sfl

The sugra piece
SIIB = 1

2κ2
10

∫
d10x

√
−g10

[
R − 1

2∂MΦ∂MΦ− 1
2e2ΦF 2

(1) −
1
2

1
5!F

2
(5)

]
The source terms
Sfl = −T7

∑
Nf

(∫
d8x eΦ√−g8 −

∫
C8
)

Since we will consider a smeared situation, these contributions
become 10d integrals.
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The solution dual to the D3D7 QGP The ansatz
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The solution dual to the D3D7 QGP The ansatz

The ansatz
The non-extremal generalization of Benini et al. (hep-th/0612118)

The metric and forms
ds2

10 =

− r2

R2

(1− r4
h

r4 )

dt2 + r2

R2 d~x2
3 + R2

S̃8F̃ 2

r2
dr2

(1−
r4
h

r4 )

+R2

S̃2

ds2
CP2 +R2

F̃ 2

(dτ+ACP2)2

F(5) = Qc(1 + ∗)ε(S5) ,

F(1) = Qf (dτ + ACP2) , Φ(r)

Non-trivial temperature requires non-extremality factor
Flavor D7 branes require F(1), running dilaton and squashing of
the sphere
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The solution dual to the D3D7 QGP The ansatz

The flavor brane embeddings
They must be solved too

How the family of embeddings looks like∑3
i=1 aiZ i = 0 → W = · · ·+ q̃

(∑3
i=1 aiΦi

)
q

Breaks SU(4)→ SU(3)× U(1)

Generalization to the backreacted case is immediate (when the
fundamentals are massless).

The associated charge density
dF(1) = −gsΩ = 2Qf JCP2
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The solution dual to the D3D7 QGP The ansatz

The explicit background solution
an awful slide...

ε∗ = λ∗
8π2

Nf
Nc

F̃ = 1−
ε∗

24
(1 +

2r4 − r4
h

6r4
∗ − 3r4

h
) +

ε2∗
1152

(
17−

94
9

2r4 − r4
h

2r4
∗ − r4

h
+

5
9

(2r4 − r4
h )2

(2r4
∗ − r4

h )2
+

−
8
9

r8
h (r4

∗ − r4)

(2r4
∗ − r4

h )3
− 48 log(

r
r∗

)

)
+ O(ε3∗) ,

S̃ = 1 +
ε∗

24
(1−

2r4 − r4
h

6r4
∗ − 3r4

h
) +

ε2∗
1152

(
9−

106
9

2r4 − r4
h

2r4
∗ − r4

h
+

5
9

(2r4 − r4
h )2

(2r4
∗ − r4

h )2
+

−
8
9

r8
h (r4

∗ − r4)

(2r4
∗ − r4

h )3
+ 48 log(

r
r∗

)

)
+ O(ε3∗) ,

Φ = Φ∗ + ε∗ log
r
r∗

+
ε2∗
72

(
1−

2r4 − r4
h

2r4
∗ − r4

h
+ 12 log

r
r∗

+ 36 log2 r
r∗

+

+
9
2

(
Li2(1−

r4
h

r4
)− Li2(1−

r4
h

r4
∗

)

))
+ O(ε3∗) ,
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The solution dual to the D3D7 QGP The ansatz

The integration constants

Integration constants were fixed requiring:

Regularity at the horizon
The solution coincides with the backreacted susy one at r = r∗
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The solution dual to the D3D7 QGP The ansatz

Two notes:

The Landau pole:
The solution has a singularity (dilaton blows up) at a finite radial
distance
This is mapped to the field theory Landau pole

A perturbative expansion (far below the LP):
The solution is a small deformation of the unflavored one, controlled by
ε∗ ∼ Nf
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The solution dual to the D3D7 QGP Energy scales and regime of validity
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The solution dual to the D3D7 QGP Energy scales and regime of validity

Energy scales
How to deal with the Landau pole

E

T ~ rh

LUV ~ r*

LLP ~ rLP

Usual notion of renormalization
We introduce an arbitrary UV scale ΛUV . IR physics
is independent of this choice.

For the expansions to be valid
ε∗ � 1 , ε∗| log rh

r∗ | � 1
For the UV completion corrections to be
subleading
ε∗ � rh

r∗
Putting everything together

e−
1

ε∗ � rh
r∗ � ε∗ � 1
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The solution dual to the D3D7 QGP Energy scales and regime of validity

Introducing εh and regime of validity

The background solution was written in terms of UV parameters
(ε∗ = λ∗

8π2
Nf
Nc

)

But the physics should be written in terms of IR parameters
We define

The IR parameter that weighs quark loops

εh = λh
8π2

Nf
Nc

Putting together the previous slide and usual considerations:

Regime of validity

Nc � 1 , λh � 1 , Nf � 1 , εh = λh
8π2

Nf
Nc
� 1
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Recap

Overview of what I have said and what I will say next

Recap up to here
We have found a (particular) solution which incorporates
massless dynamical quarks in the dual deconfined plasma.
It is supersymmetric in the zero temperature limit.

The rest of this talk
I will discuss some of its physical properties (thermodynamics and
energy loss within the plasma)
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The physics of the plasma Thermodynamics

Temperature, Entropy, Energy, Free Energy

Temperatue
Regularity of euclideanized metric

T = rh
πR2

[
1− 1

8εh −
13
384ε

2
h
]

Energy density
ADM energy of the black hole

ε = 3
8π

2N2
c T 4 [1 + 1

2εh + 1
3ε

2
h
]

Entropy
Area of the horizon

s = π2

2 N2
c T 3 [1 + 1

2εh + 7
24ε

2
h
]

Free energy
On-shell euclidean action

f = −1
8π

2N2
c T 4 [1 + 1

2εh + 1
6ε

2
h
]

Consistently:
s = −∂T f f = ε− T s

(where we need to use ∂T εh = ε2h/T )
At first order in εh, the probe limit of Mateos, Myers, Thomson (07)
is recovered
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The physics of the plasma Thermodynamics

Heat Capacity, Speed of Sound, Shear Viscosity

Heat capacity
cV = ∂T ε

cV = 3
2π

2N2
c T 3 [1 + 1

2εh + 11
24εh

]

Speed of sound

v2
s = s/cV

v2
s = 1

3

[
1− 1

6ε
2
h
]

< 1
3

Breaking of conformal invariance comes at order ε2h.
v2

s <
1
3 agrees with conjecture in Cherman, Cohen, Nellore (09)

Shear and bulk viscosities

η = 1
4πs , ς

η = 2
(1

3 − v2
s
)

=
ε2h
9
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The physics of the plasma Energy loss of partons

Outline

1 Motivation

2 AdS/CFT with fundamental matter

3 The solution dual to the D3D7 QGP
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The physics of the plasma Energy loss of partons

The jet quenching parameter
Liu, Rajagopal, Wiedemann (06)

Computation of the “bremsstrahlung" of a high energy parton
within the plasma
The computation is perturbative except for a non-perturbative
quantity which depends on the strongly coupled medium

q̂ =
(
π α′

∫ r∗
rh

e−
Φ
2

√
grr

gxx
√

gxx +gtt
dr
)−1

=
π

3
2
√
λhΓ( 3

4 )

Γ( 5
4 )

T 3 [1 + 1
8(2 + π)εh + γ ε2h

]
where γ = 11

96 + π
48 + 3π2

128 + 1
8C + 1

48 4F3
(
1,1,1, 3

2 ; 7
4 ,2,2; 1

)
≈ 0.5565.
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The physics of the plasma Energy loss of partons

Trying to get a handle on phenomenology

Question: Using this plasma as a toy model, how do we best
estimate the q̂ for QCD?

Answer: It is not clear!

An (unjustified) numerical estimate:

Take:
Nc = Nf = 3
αs = 1

2 ;λh = 6π
εh = 0.24
T = 300MeV

⇒
The result is:
q̂ = 5.3 (GeV)2/fm
(for Nf = 0 it is q̂ = 4.5 (GeV)2/fm )
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Summary

Summary

The string theory side
I have presented a black hole solution of type IIB coupled to
smeared Nf D7-brane sources

It is a perturbative deformation (in ε ∼ Nf ) of AdS5 × S5

It has a singularity at rLP

The field theory side
The solution is dual to a particular quark-gluon plasma
The field theory has a Landau pole, but IR physical properties
can be consistently computed
We have extracted the thermodynamics and started analysing
energy loss of partons
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Summary

Outlook
Many interesting open problems can be addressed!

Backreaction of massive quarks
Transport coefficients (bulk viscosity, . . . ) (0912.3256)
Phase transitions, meson spectra, . . .
Chemical potential, baryon number
Other set-ups (D2-D6, D4-D6, . . . )

Thanks !
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