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Main Idea:

n We will construct a new class of black hole solutions with
“scalar hair” i.e. with a nontrivial profile for a scalar field.

n We will do this in the context of the AdS/CFT correspondence,
our black holes will be asymptotically AdS5×S5.

n Our solutions are exact (i.e. in analytic form), in the limit where
the black holes are small.



Motivations
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n Phase diagram of large N gauge theories

• Black Holes in AdS correspond to saddle points of dual gauge
theory at finite temperature/chemical potential.

• Hairy black holes → new phases of strongly coupled gauge
theory.

n Relation to “Hairy Black Branes”

• Superconductivity in AdS/CFT etc.

n Entropy of Supersymmetric Black Holes in AdS5

• Gutowski-Reall black hole and entropy of 1/16 BPS states in
N = 4 SYM.



Introduction

4 / 34



Black Hole instabilities

Introduction
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Charged black holes may be unstable in the presence of charged scalar
fields:

n Classical Picture: charged particles can have negative energy if
close enough to horizon → “charge analogue” of Penrose
process, pair production.

n Superradiance: reflection coefficient > 1 if ω < eµ.

n In AdS superradiance amplified → “black hole bomb”.

n Gubser’s observation: charged black branes in Poincare AdS
may be unstable to the condensation of charged scalar.



Hairy black holes in AdS

Introduction

6 / 34

n Planar AdS: no expansion parameter, (mostly) numerical work.

n Global AdS: we have new parameter that we can tune, the size of
black hole in AdS units. It will allow us to perform analytic
computations.
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The Setup
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n AdS/CFT: IIB on AdS5×S5 is dual to N = 4 SYM on
S3 × time.

n We will be working in global AdS: bulk is solid cylinder with
“confining” gravitational potential.

n We focus in the regime N →∞ and λ = g2
Y MN À 1, where IIB

supergravity is reliable.

n We will analyze the scalar field condensation for charged AdS
black holes.



A consistent truncation
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n We do not want to work with the full 10-dimensional IIB
supergravity theory.

n We consider the reduction of IIB supergravity on AdS5×S5 down
to AdS5.

n SO(6) isometry of S5 → U(1)3 gauge fields in AdS5.

n 3 R-charges Q1, Q2, Q3 corresponding to angular momentum on
S5.

n To simplify, we take Q1 = Q2 = Q3 = Q.

n Under this reduction we get scalar fields which are charged under
the U(1) (are dual to chiral primary operators in N = 4).



A consistent truncation
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n In the end we get a 5-d theory with bosonic fields

gµν , Aµ, φ

and action of the form

S =
∫ √

g(R + 12 + FµνFµν + |Dµφ|2 + ∆(∆− 4)|φ|2

+ interactions + fermions)
(1)

n The field φ is dual to the operator Oφ = trX2 + trY 2 + trZ2 in
the gauge theory. It has conformal dimension ∆ = 2 and charge
e = 2.

n This action is a consistent truncation of 10d IIB supergravity.

n We will be studying charged black holes (and their instabilities)
within this truncation.



Reissner Nordstrom black holes in AdS
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n The RNAdS black hole is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3

with f(r) = r2 + 1− (R2+µ2+1)R2

r2 + µ2R4

r4 and the gauge field

A = µ

(
1− R2

r2

)
dt

n The black hole is parametrized by the horizon radius R and the
chemical potential µ (or equivalently its mass and charge).

n The requirement for regularity is

µ2 ≤ (1 + 2R2)

which is saturated for extremal black holes.



Reissner Nordstrom black holes in AdS
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n Classical black holes have mass and charge which scale like N2.
We work in N →∞, so we introduce the rescaled

m =
M

N2
, q =

Q

N2

n Rewriting the regularity condition in terms of the mass m and
charge q of the black hole we have

m ≥ 3q + 3q2 − 6q3 +O(q4)

n Notice that the BPS bound reads

m ≥ 3q

n Comparing the two we see that there are no supersymmetric
RNAdS black holes. The extremality bound is reached before the
BPS bound as we lower the mass, for fixed charge.



Instability of global RNAdS black holes

Small hairy black holes
in global AdS

13 / 34

n In the presence of a charged scalar field the RNAdS black hole
may become unstable near extremality (i.e. at low temperature).

n At that point the scalar field condenses.

n To determine the onset of the instability we need to compute the
spectrum of quasinormal modes (QN modes) of the scalar field in
the background of the black hole.



Instability of global RNAdS black holes
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n Quasinormal modes are solutions of the (linearized) equation of
motion for the scalar field, with ingoing boundary conditions at
the horizon of the black hole and normalizable conditions at
infinity.

n These modes have the general form

φ ∼ e−iωtf(r,Ω)

n Because of the two boundary conditions only discrete (complex)
frequencies ω are allowed.

n In general Imω < 0 so these modes are exponentially decaying in
time (the black hole is stable under perturbations).

n The onset of the instability is when a QN mode becomes
unstable (ω has positive imaginary part).



Instability for small RNAdS black holes
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n In general it is not possible to compute the QN spectrum
analytically.

n Consider the limit Rhorizon/RAdS → 0 i.e. a very small RNAdS
black hole.

n In this limit the wave equation simplifies in two different regimes.

n In the “far regime” r >> Rhorizon the geometry in the bulk is
approximately the same as that of empty AdS.

n Then we also have the “near regime” where the solution can be
computed for r ¿ 1

n By matching the solution in the overlap regime we can determine
the QN spectrum analytically in an expansion in Rhorizon/RAdS .



Instability for small RNAdS black holes
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n At leading order we find that the s-wave QN mode of a charged
scalar field becomes unstable when

∆− µe < 0

n When this quantity is negative the mode becomes dynamically
unstable and undergoes Boes-Einstein condensation.

n In our case we have µ ≈ 1 for small RNAdS black hole, and
∆ = 2, e = 2.

n What is the endpoint of the condensation?



Solitons in AdS

Small hairy black holes
in global AdS

17 / 34

n Notice that the wavelength of the unstable mode is much larger
than the black hole horizon.

n To leading order, we can ignore the (small) black hole at the
center of AdS and simply consider empty AdS held at chemical
potential µ ≈ 1 which triggers the Bose-Einstein condensation of
the scalar field.

n The endpoint of the condensation will be a spherically symmetric,
nontrivial configuration of the scalar field, i.e. a soliton. (a
coherent state superposition of the excitations of the scalar field).



Equations of motion for soliton
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We have to solve

Rµν − 1
2
gµνR− 6gµν = −3

2
TEM

µν +
3
8
Tmat

µν (2)

where

TEM
µν =Fµ

σFσν − 1
4
gµνFασFσα

Tmat
µν =

1
2

[
Dµφ (Dνφ)∗ + Dνφ (Dµφ)∗

]− 1
2
gµν |Dσφ|2 + 2φφ∗gµν

− 1
4(4 + φφ∗)

[
∂µ(φφ∗)∂ν(φφ∗)− 1

2
gµν [∂σ(φφ∗)]2

]

(3)
the Maxwell equation

∇σFµ
σ =

i

4
[φ(Dµφ)∗ − φ∗Dµφ] (4)

and the scalar equation

DµDµφ + φ

[
[∂σ(φφ∗)]2

4(4 + φφ∗)2
− ∇2(φφ∗)

2(4 + φφ∗)
+ 4

]
= 0. (5)



Soliton in perturbation theory
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n We expand the fields in a small parameter ε which characterizes
the condensate of the scalar field

gµν = g(0)
µν + ε g(1)

µν + ε2 g(2)
µν + ...

A0 = 1 + ε A
(1)
0 + ε2 A

(2)
0 + ...

φ = ε φ(1) + ε2 φ(2)...

(6)

where g
(0)
µν is the metric of empty AdS5.

n It is straightforward to determine the unknown functions by
solving the EOMS perturbatively in ε.

n For example, we find

φ(1) =
1

1 + r2
, φ(2) = 0, φ(3) =

1
8(1 + r2)3

, ...



Soliton in perturbation theory
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n For the mass and charge we find

m =
3
4

(
ε2

4
+

ε4

192
+

ε6

1920
+

169ε8

2211840
+O (

ε10
))

q =
1
2

(
ε2

8
+

ε4

384
+

ε6

3840
+

169ε8

4423680
+O (

ε10
)) (7)

n The soliton is supersymmetric i.e. m = 3q.

n We found a supersymmetric condensate of the unstable scalar
mode.

n It is an 1/8 BPS configuration.



Hairy black hole in perturbation theory
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n For small Rhorizon the hairy black hole ≈ small RNAdS black
hole surrounded by a cloud of the supersymmetric soliton.

n The hairy configuration can be analytically computed in a double
expansion in the field amplitude ε and the horizon radius
Rhorizon.

n One indeed finds hairy black hole solutions provided that

3q ≤ m ≤ 3q + q2 +O(q4)

At the lower bound they become pure supersymmetric soliton
(constructed ) and at the upper bound usual RNAdS black holes
(without condensate).

n The explicit form (not presented here) of the hairy black hole
solutions can be determined analytically order by order in
perturbation theory.



Thermodynamics of hairy black holes
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n For m and q where both RNAdS and hairy black hole exist, hairy
BH dominates entropically.

n For small q, hairy black hole ≈ noninteracting mix of the
supersymmetric soliton and a standard RNAdS black hole:

imagine splitting the total charge q as

q = qsoliton + qRNAdS

The entropy of the soliton is zero and msoliton = 3qsoliton. Then
we compute the entropy of the RNAdS black hole with mass
mBH = m−msoliton and charge q − qsoliton, as a function of
qsoliton, and maximize with respect to it. We find the entropy of
the corresponding hairy black hole.



Phase diagram at small charge
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n Microcanonical phase diagram.

n States with entropy of order N2 down to the BPS bound.



The phase diagram at large charge
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What happens at finite q?

The phase diagram at
large charge
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n Our previous results were robust and the phase diagram cleanly
derived in an expansion around q = 0.

n However we would like to understand what happens for finite q,
where unfortunately we do not have analytic control.

n This is also important in order to study the q →∞ limit, or the
planar limit to make contact with the hairy brane story.

n For general q we expect the same qualitative behavior: for fixed
charge, as we lower the mass we start with the RNAdS black
hole, then it becomes unstable and we enter a hairy black hole
phase, which extends all the way down to the BPS bound
m = 3q reducing to a pure-soliton configuration.

n In the following we will focus on the lower endpoint of the phase
diagram, that is, on solitonic configurations saturating the BPS
bound (easier to find, have to solve SUSY equations).



Spherically symmetric supersymmetric configurations

The phase diagram at
large charge
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n We look for spherically symmetric configurations in the bulk
saturating the BPS bound m = 3q, this time keeping q finite.

n 1/8 BPS solutions have been partly classified. For the spherically
symmetric case with all 3 R-charges equal, the supersymmetric
solutions have the form

ds2 = − 1 + ρ2h3

h2
dt2 +

h

1 + ρ2h3
dρ2 + ρ2 h dΩ2

3

A = h−1dt, φ = 2
√

(h + ρh′/2)2 − 1

(8)

The entire solution is then determined by the single function h(ρ)
which has to satisfy the following ordinary differential equation

(1 + ρ2 h3) (3 h′ + ρ h′′) = ρ
[
4− (2h + ρ h′)2

]
h2 (9)

which unfortunately cannot be solved analytically, so we look for
numerical solutions.



Numerical Results for smooth solitons

The phase diagram at
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n We demand smoothness at the center of AdS. We fix the “initial
conditions” at the center by specifying h0 = h(0) and then solve
the equation outwards. The solution asymptotes to AdS.

n Below we plot the charge q of the soliton as a function of h0.
The mass is fixed by the BPS bound m = 3q.

n We notice the existence of a maximum charge qc for 1/8 BPS
smooth solitons.



Oscillatory behavior near the critical charge

The phase diagram at
large charge
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n If look for solutions around qc more carefully we find that q(h0)
actually oscillates around qc. This means that there are many
BPS solutions with the same value of q!



Oscillatory behavior near the critical charge

The phase diagram at
large charge
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n All solutions supersymmetric so (presumably) stable.

n The oscillatory behavior is related to the presence of a special
critical (singular) solution which acts as an attractor point in the
space of solutions of the differential equation that we are trying
to solve.

n The oscillations around the critical value qc can be determined
analytically.

n Solutions with the same q have different values of 〈Oφ〉.



What happens for q > qc?

The phase diagram at
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n There are no smooth spherically symmetric 1/8 BPS solutions.

n However there is a 1-parameter family of supersymmetric
solutions with an a

ρ kind of singularity.

n The charge of these solutions as a function of a looks like

n It seems plausible that this is the BPS limit of hairy black holes
for q > qc.



Spherically symmetric supersymmetric solutions

The phase diagram at
large charge
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The conjectured phase diagram for all values of Q

The phase diagram at
large charge
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Including rotation in AdS5

The phase diagram at
large charge
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n It would be interesting to explore the phase diagram of hairy
black holes inluding angular momentum in AdS5.

n In this case there are BPS black holes, the Gutowski Reall black
hole.

n Puzzle: there are extremal AdS BHs for all values of the 5
parameters (J1, J2; Q1, Q2, Q3). Only a 4-parameter sub-family
is BPS.

n This seems peculiar from boundary counting of 1/16 BPS
operators (at weak coupling).

n Could there be new hairy BPS black holes extending the
Gutowski-Reall family?

n Work in progress...



Summary and further directions

The phase diagram at
large charge
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n We found analytic expressions for small hairy black holes in AdS.

n We presented a conjecture for the microcanonical phase diagram
of the N = 4 on S3 ×R, as a function of the R-charge.

n What is the nature of the singular supersymmetric solutions? Are
they singular in 10d?

n Is there condensation of other chiral primaries?

n It would be interesting to explore the similar story for rotating
hairy black holes and to understand the entropy puzzles of the
Gutowski-Reall black hole.

n What is the gauge theory interpretation of the “hairy” phase?
Can we find an analogue at weak ’t Hooft coupling?


