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Motivation:
“role of higher curvature interactions on AdS/CFT calculations”

Overview:

2. Holographic c-theorem I: Einstein gravity

3. Holographic c-theorem II: Quasi-topological gravity
4. Holographic c-theorem IlI: Higher curvature theories
. ad*, Entanglement entropy and Beyond

6. Concluding remarks



Zamolodchikov c-theorem (1986):

e renormalization-group (RG) flows can seen as one-parameter
motion d 9
N OF
in the space of (renormalized) coupling constants{g¢*, i =1,2,3,---}
with beta-functions as “velocities”

o for unitary, renormalizable QFT’s in two dimensions, there exists
a positive-definite real function of the coupling constants c(g):

. . d
1. monotonically decreasing along flows: Ec(g) <0

2. “stationary” at fixed points ¢’ = (3°)" :

8'(g") = 0 5gic(9) =0

3. at fixed points, it equals central charge of corresponding CFT
c(g”) = c



C-theorems in higher dimensions??

\
d=2: (T,*) = ——=R
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a
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]4 — CMVPOCMZ/PG and E4 — RW/'OJR/M/,OG L 4RMVR/LI/ T R2

« in 4 dimensions, have three central charges: ¢, a, @’
» do any of these obey a similar “c-theorem” under RG flows?

x a' -theorem: «’ is scheme dependent (not globally defined)

X c -theorem: there are numerous counter-examples
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« in 4 dimensions, have three central charges: ¢, a, @’
» do any of these obey a similar “c-theorem” under RG flows?

a -theorem:. proposed by Cardy (1988)

e nUMerous nontrivial examples, eqg, perturbative fixed
points (Jack & Osborn), SUSY gauge theories (Anselmi et al)




(Anselmi, Freedman, Grisaru & Johansen, hep-th/9708042)
SUSY example:

* SU(N,) supersymmetric QCD with N; flavors of massless quarks
with 3/2 < Ny/N. < 3

 in UV, asymptotically free:

—;%@M59+WWNJ

1
= — (3N —-3+2N;N.)
24
* in IR, flows to nontrivial conformal fixed point:

3 N4
= —[2N*—-1-3=¢
T ( c f{%)

1 N4
= —|7TN?—-2-9¢
IR = 6 ( c f{%)




(Anselmi, Freedman, Grisaru & Johansen, hep-th/9708042)

SUSY example :

* SU(N,) supersymmetric QCD with N; flavors of massless quarks
with  3/2 < Ny/N, < 3
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C-theorems in higher dimensions??

\
d=2: (T,*) = ——=R

12
d=a: (T, = @

a
% g, - R
1672 ¢ T@

]4 — CMVPOCMZ/PG and E4 — RW/'OJR/M/,OG L 4RMVR/LI/ T R2

« in 4 dimensions, have three central charges: ¢, a, @’
» do any of these obey a similar “c-theorem” under RG flows?

a -theorem:. proposed by Cardy (1988)

./ °*numerous nontrivial examples, eg, perturbative fixed
" points (Jack & Osborn), SUSY gauge theories (Anselmi et al)

 holographic field theories with gravity dual



C-theorems in higher dimensions??
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« in 4 dimensions, have three central charges: ¢, a, @’
» do any of these obey a similar “c-theorem” under RG flows?

a -theorem:. proposed by Cardy (1988)

/ e+ numerous nontrivial examples, eg, perturbative fixed
points (Jack & Osborn), SUSY gauge theories (Anselmi et al)

/ « holographic field theories with gravity dual (a = ¢)
* no completely general proof

XK - counterexample proposed: Shapere & Tachikawa, 0809.3238



(Shapere & Tachikawa, 0809.3238)
Counterexample to a-theorem

* flow between two N = 2 superconformal gauge theories
UV: gauge group SU(N.+1) with N.=2N_ fundamental hyper’s
IR: gauge group SU(N,) with N(=2N_ fundamental hyper’s (m=0)

1
aUV—aIR:E(19NC—7N3—I—15) (<0 for N.>4)

 loophole: accidental U(1) symmetry appears in the IR limit

» Possibilities?:
1) no theorem exists

) “C-theorem” exists but C(g*) # a universal

) “C-theorem” exists and C(g*) = a,
but theorem needs fine-print for d>2

} not universal

Today’s Talk

IV) something more interesting??



C-theorems in higher dimensions??
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« in 4 dimensions, have three central charges: ¢, a, @’
» do any of these obey a similar “c-theorem” under RG flows?

a -theorem:. proposed by Cardy (1988)

/ e+ numerous nontrivial examples, eg, perturbative fixed
points (Jack & Osborn), SUSY gauge theories (Anselmi et al)

/ « holographic field theories with gravity dual (a = ¢)
* no completely general proof

XK - counterexample proposed: Shapere & Tachikawa, 0809.3238
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(Freedman, Gubser, Pilch & Warner, hep-th/9904017)
(Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126)

Holographic RG flows:

1
I = 33 d5£U vV —g (R + »Cmatter)
203,
. . . . 12
e assume stationary points: matter fields fixed and Lmatter = ﬁa?

. 1
(eg, scalar field: Liatrer = —5(06)* = V(9) )
« consider metric: ds® = > (—dt? + dz? + dx2 + da2) + dr?

e at stationary points, AdS; vacuum: A(r) = r/L with L = L/,

* RG flows are solutions starting at one stationary point and
ending at another >

Vig) 1Y




(Freedman, Gubser, Pilch & Warner, hep-th/9904017)
(Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126)

Holographic RG flows:

2

. . _ T
- for general flow solutions, define: a(r) = EA()?
372 T2
/ = — A// = — Tt - T’I"T > O
= gaey O Ay T 2
Einstein equations J null energy condition J

- at stationary points, a(r) — a* = 7% L*/¢3 and hence

[aikfv > G?R]




(Freedman, Gubser, Pilch & Warner, hep-th/9904017)
(Girardello, Petrini, Porrati and Zaffaroni, hep-th/9810126)

Holographic RG flows:

2

: . _ T
- for general flow solutions, define: a(r) = EA()?
372 2
/ — A// — _ Tt _TTT >O
= gaey O Ay T 2
Einstein equations J null energy condition J

- at stationary points, a(r) — a* = 7% L*/¢3 and hence

[CLUV > aIR]

« using holographic trace anomaly: a™ = a
(e.g., Henningson & Skenderis)

—> supports Cardy’s conjecture
o for Einstein gravity, central charges equal(a — c) CUV = CIR



(Freedman, Gubser, Pilch & Warner, hep-th/9904017)
Holographic RG flows:

1
I = W /dd+1x vV —g (R + »Cmatter)
P
« same story is readily extended to (d+1) dimensions
2d/2
e defining: aq(r) = —
[ (d/2) (LpA'(r))"
_ d/2 d/2
dr) = ——4ZUm A"(r) = — - (T, -~ T",) >0
['(d/2)tp A'(r)e ['(d/2)tp  A'(r)e
Einstein equations J null energy condition J

. at stationary points, a(r) = a* = 792 /T'(d/2) (L/¢p)?* ' and so

[a?ﬂ/ > G?R]

« using holographic trace anomaly: a* o central charges
(for even d! what about odd d?) (e.9., Henningson & Skenderis)
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Improved Holographic RG Flows:

 add higher curvature interactions to bulk gravity action

—— provides holographic field theories with, eg, a # ¢
so that we can clearly distinguish evidence of a-theorem

(Nojiri & Odintsov; Blau, Narain & Gava)

—> more generally broadens class of dual CFT’s



Improved Holographic RG Flows:

e engineering the gauge theory: gauge groups, field content, . . .
versus
e engineering the CFT: parameters in n-point correlators, . . .

graviton, h.,, <€——> stress tensor, T,
e gravitational action naturally connected to correlators of Zau

O @ @G

<Tab Tcd> Tab Tcd Tef <Tab Tcd Tef Tgh>

« adding higher curvature terms changes both parameter values
and also form of n-point functions in dual CFT’s



Improved Holographic RG Flows:

 add higher curvature interactions to bulk gravity action

—— provides holographic field theories with, eg, a # ¢
so that we can clearly distinguish evidence of a-theorem

(Nojiri & Odintsov; Blau, Narain & Gava)

—> more generally broadens class of dual CFT’s



Higher Curvature Terms in Derivative Expansion

* in strings, sugra action corrected by higher curvature terms
o/ corrections: o /L2 ~ 1/V/\
string loops: g5 =~ A\/N,

* perturbing sugra theory with higher curvature terms provides
Insight into finite N., A corrections in gauge theory

* here | want to go beyond perturbative framework to study
RG flows (i.e., want to consider finite values of new couplings)

o if we go to finite parameters where one of the higher
curvature terms is important, expect all are important

e ultimately one needs to fully develop string theory for
Interesting holographic background’s



Higher Curvature Terms without Derivative Expansion

 instead consider “toy models” with finite R" interactions
(where we can maintain control of calculations)

» with AdS/CFT, higher curvature couplings become dials to
adjust parameters characterizing the dual CFT

* note that any one R" interaction implicitly determines an
Infinite number of couplings in T_, correlators

What about the swampland?

 constrain gravitational couplings with consistency tests
(positive fluxes; causality; unitarity) and keep fingers crossed!

» seems an effective approach with Lovelock gravity
(eg, Brigante, Liu, Myers, Shenker & Yaida)

(see also Parnachev’s talk)



' : : Myers & Robinsion, 1003.5357
QuaS|-TopoIog|caI gravity: (My )

A
I = d’zy—g | + R+ L L= Z
2@ x [ + R+ L5 xa+ L 2
with X4 = R*““Rgpeq — 4Ry R* + R
1
Zs = ROIRSIRAY+ — (21Rupea RR — T2Rgpea R% R

56
+120Rapca R R + 144R) R, R — 132R R R + 15R?)

e three dimensionless couplings,L/¢p, A, u, allow us to explore
dual CFT’s with most general three-point function (Top Teqd Te s )

“maintain control of calculations”
 analytic black hole solutions

e linearized eom in AdS; are second order (in fact, Einstein eq’s!)
 can be extended to higher dimensions (D=7)

e gravitational couplings constrained — see Parnachev’s talk
(Myers, Paulos & Sinha, 1004.2055)



: : : Myers, Paulos & Sinha, 1004.2055
Quasi-Topological gravity: (My )
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' : : Myers & Robinsion, 1003.5357
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A
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Zs = ROIRSIRAY+ — (21Rupea RR — T2Rgpea R% R
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e three dimensionless couplings,L/¢p, A, u, allow us to explore
dual CFT’s with most general three-point function (Top Teqd Te s )

“maintain control of calculations”
 analytic black hole solutions

e linearized eom in AdS; are second order (in fact, Einstein eq’s!)
 can be extended to higher dimensions (D=7)

e gravitational couplings constrained — see Parnachev’s talk
(Myers, Paulos & Sinha, 1004.2055)



' : - Myers & Robinsion, 1003.5357
Qua5|-TopoIog|caI gravity: (My )

I = A’z ~/—g [%‘+R+L2—x LAt 25]

263 \ ’
anticipate RG flows

with xa = R™“Rupeq — 4R, R + R?

1
25 = RSOR{RS+ oo (A Rabea R R — T2Rapea R, R
+120Rupea R R + 144R) R, R — 132R R, R + 15R?)
SO calculate!
. ture in AdS L=
curvature in £ vacuum: = = T2

where  o? — foo + Af2 +pufl =0

 holographic trace anomaly: (Myers, Paulos & Sinha, 1004.2055)

0=l (oAt onf2) . e=mh (- —aup2)
63 00 Hloo) s €3P o0 o0



RG flows in Quasi-Topological gravity:

« consider metric: ds® = e*4) (—dt? + da? + dr3 + dx3) + dr’
-> AdS; vacua: A(r)=r/L

e natural to define “flow functions”:

2
(1= 6ALA(r)2 + 9L A’ (r)")

CL(T) = E%A/(TP (
= (1= 2XL°A'(r)? = 3uL*A'(r)*)

7

C\T) =
"= G
where at stationary points: a(r) =a, c(r) =c




RG flows in Quasi-Topological gravity:

71.2

a(r) = E%A/Q(T)?’ (1 — 6AL2A (r)? + 9uL* A (r)*)

c(r) = 7 X, o (1 — 2AL%A/(r)? — 3uL* A (r)")

where at stationary points: a(r) =a, c(r) =c

* in general flows:
, L 32
"= TRany

71'2

- 1 (Ttt —-T7) =0

- €3PA/(T) T

assume null energy condition

A"(r) (1 = 2XL2A'(r)* = 3uL*A'(r)*)




RG flows in Quasi-Topological gravity:

,n.2

a(r) = BAT (1 — 6AL2A(r)* + 9,uL4A’(7“)4)
c(r) = B%X/Q(T)S (1 —2AL2A (r)? — 3uL*A'(r)*)

where at stationary points: a(r) =a, c(r) =c

* in general flows:

/ 3 7 2 A1/ N\2 4 A1/ N4
= — A 1 —2)\L°A — 3ul*A
) = gy A0) (- DA ) = 3L A )Y
w2 ;
= T, —=T",.) >
63]314’(7")4 ( t ) =0
/ 37T2 17 2 2 Al 2 4 4/ 4
= — A 1 — =MNL°A —ul*A
c (T> E%A/(T)zl (T) 3)\ (Ir) /’L (T)

_ o L= SARA()? - pl A" (Tt —T7,) 27
K%A’(T)‘l 1 — 2AL2A/(r)2 — 3uLl4 A ()4 t r) 1




RG flows in Quasi-Topological gravity:

WQ

a(r) = BAT (1 — 6AL2A(r)* + 9,uL4A’(7“)4)
c(r) = B%X/Q(T)S (1 —2AL2A (r)? — 3uL*A'(r)*)

where at stationary points: a(r) =a, c(r) =c

* in general flows:

/ 371-2 /! 2 Al 2 4 A/ 4
= — A 1 —2)\L°A — 3ul*A
() = gy A (L= LA = LA (r)')
w2 ;
- — T, —=T",.) >
63]314’(7")4 ( t ) =

e can try to be more creative in defining c(r) but we were unable
to find a expression where flow is guaranteed to be monotonic

e our toy model seems to provide support for Cardy’s “a-theorem”
In four dimensions



Higher Dimensions: D =d+1 (d > 6)
o straightforward to reverse engineer “a-theorem” flows
e eg’s of motion:
T —T" = (d—1) A"(r) (1 —2AL?A'(r)? = 3uL*A'(r)")
« expression with natural flow:

_ /2 2(d=1) 1oy o 3d=1) —y . 4
") = T a72) (A () <1_ i—3 AU et A(T))
) ()= e (7" —T",) >0

T(d/2) A ()

|

assume null energy condition



Higher Dimensions: D =d+1 (d > 6)
o straightforward to reverse engineer “a-theorem” flows
e eg’s of motion:
T —T" = (d—1) A"(r) (1 —2AL?A'(r)? = 3uL*A'(r)")
« expression with natural flow:

_ /2 2(d=1) 1oy o 3d=1) —y . 4
") = T a72) (A () (1_ i—3 AU et A(T))
) (1) = e (7" —T",) >0

T(d/2) A ()

« flow between stationary points (where aj; = aq(r)| 449)

(GJZZ)UV > (GZ)IR

What is a;?27?



What is a;??

d/2fd—1 2(d — 1 d—1
af=— (1— ( )Afoo—3<_5)uf§o>

I'(d/2)¢% ! d—3 d
1 o0
where AdS curvature: 77 = ];—2 0% — foo AL 4 ufS =0

« ay is NOT Cr, coefficient of leading singularity in

<Tab(x) Tcd<0) > — " od Iab,cd(aj)

. aj is NOT Cgs, coefficient in entropy density: s = Cg 79}



What is a;??

d/2d-1 2(d — 1 d—1
0= (1- 2= - g )

I'(d/2)¢% ! d—3 d
1 o0
where AdS curvature: 77 = ];—2 0% — foo AL 4 ufS =0

o trace anomaly for CFT’s with even d:
(T,") = Z B;(Weyl invariant); — 2(—)% @Euler density)q

o verify that we have precisely reproduced central charge

a;=A

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava,;
Imbimbo, Schwimmer, Theisen & Yankielowicz)

—> agrees with Cardy’s proposal (1988)



What is a;??

d/2[d-1 2(d — 1 d—1
0= (1- 2= - g )

I'(d/2)¢% ! d—3 d
1 o0
where AdS curvature: 77 = ];—2 0% — foo AL 4 ufS =0

o trace anomaly for CFT’s with even d:
(T,") = Z B;(Weyl invariant); — 2(—)% @Euler density)q

o verify that we have precisely reproduced central charge

a;=A

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava,;
Imbimbo, Schwimmer, Theisen & Yankielowicz)

What is ag for odd d?? (Later!)



RG flows in Quasi-Topological gravity:

Comment:
o “c-theorem” still assume null energy condition

—> construct a toy model with reasonable physical properties

creative
gravity

. 12
V(Cb ) — —ﬁ@Q J
 natural to consider more general models:
. L? 7LA
I = %3 &>z /=g |-V(9) +R+—)\(¢)X4+TM(¢)Z5

L2 () R%0,6 9y + L' (6)R2V26 + - }

What are the rules??
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More Improved Holographic RG Flows:

 quasi-topological gravity obeys c-theorem in very nontrivial way
* how robust really is this result??

* new toy models: start with arbitrary curvature-cubed action

1 —1 ~ ~
= /dd“xw [ @12y Ry 12 4 143
P
where X = b Rupea R + byRuy R* + bsR? |
Z = aRSGREIRAY + oo RadeRcdef R, + c3 Rapea ™ R
+ ¢y RabcdRadeR + ¢5 Rapea R*R + ¢ R’R,°R °
+c; R'RR + cg R.
1
e AdS vacua: = = % ,where o — foo + A2 +ufs =0
- Z_‘Z’(zbl+db2+d(d+1)b3)
noo= _4=5 ((d=1)e1+4co+2des +2d(d+1) ey + d* c5 +d* e + d*(d + 1) cr + d*(d + 1)cs)

SH

—1



More Improved Holographic RG Flows:

* IS it reasonable to expect any theory to obey a c-theorem? NO

* how do we constrain theory to be physically reasonable?

* recall one of the nice properties of quasi-top. gravity was that
linearized graviton equations in AdS were 2" order

« greatly facilitates calculations but deeper physical significance

« analogy with higher derivative scalar field eq. (in flat space)

I A 1 1 1
(V‘I‘M2(V))¢—O >q2(1_aq2/M2)_q2Tq2_M2/a
ghost

e graviton ghosts will be generic with 4" order equations

—> couple to additional non-unitary tensor operator in dual CFT



More Improved Holographic RG Flows:

1 d+1 d(d o 1) 2 2 v 4 5
I = ST /d z\/—g [ oot RELAX 4+ L2
where X = b RupeaR™ + by Ry R + bsR?
Z = aRSGREIRAY + 2 Ry ™R R. ™ + c3 Rapea R*% R

+C4 RabcdRabcdR + Cs RabcdRacRbd + Ce RabRbc CCL
+e RPROR+ cs R

« demand that linearized graviton equations in AdS were 2" order

@: b, ba+4by :D

361 — 2462 — 4(d -+ 1)63 — 4d(d + 1)64
—(2d — 1)es — 3deg —d(d+1)er =0
3c1 — 12¢9 — 2dcg — 2(d* +d — 4)cy + 2¢5 + 4d ey + 6d(d + 1)cg = 0

Work In progress!

R?2 interaction is GB




More Improved Holographic RG Flows:
 as before, try reverse engineer “c-theorem” flows by examining
eom: 7%, —T", = ... <—— contains 4-derivative terms!
» need an extra constraint to reduce this expression to 2" order
deg + (d+ 1)es +4d ey + des + d” + 1(:6 4+ d(d+ 1)cy +4d*cg = 0
 With extra constraint, eq’s of motion yield:
T =T =(d—1)A"(r) (1 —2X\L*A'(r)? — 3uL*A'(r)*)
« expression with natural flow:

_ w2 20d—=1) 2o oo 3d=1) 4, 4
") = T (d72) (tp A () <1_ a—3 AN TeE A(T))

—d)2

T(d/2) A ()

— d(r) = (T~ 17,) 2 0

|

assume null energy condition



More Improved Holographic RG Flows:
 as before, reverse engineer “c-theorem” flows

« With extra constraint, flow eq’s of motion yield:
T —T". = (d—1)A"(r) (1 —2AL*A'(r)* — 3uL*A’(r)*)

« expression with natural flow:

/2 20d—1) . 5., o 3(d
aq(T) T(d/2) ((p A/ (r)) -1 (1 — ANLZA (1) —

_1) 4 At 4
d—3 d—5‘d”4“)>

d)2

CT(d/2)es A ()

— (1) = (T = 17,) 2 0

- flow between stationary points (where a); = aq(7)| 445)

(GJZZ)UV > (GZ)IR

What is a,;?7?



What is a;??

. rd/2[d=1 2(d — 1 3(d—1
Ag = d—1 o(d—1)/2 (1 - (d ))‘foo — (d ):ufgo>
D(d/2)lE5 fx -3 —9
1 fe

where AdS curvature: 0% — foo + A2 4+ uf3 =0

A
o trace anomaly for CFT’s with even d:
(T,") = Z B;(Weyl invariant); — 2(—)% @Euler density)q

o verify that we have precisely reproduced central charge

a;=A

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava,;
Imbimbo, Schwimmer, Theisen & Yankielowicz)

—> again, agrees with Cardy’s proposal (1988)



More Improved Holographic RG Flows:

» need an extra constraint to reduce flow eq.’s to 2"d order

d? +1
deg + (d+ 1)eg + 4dey + des + + c6 + d(d+ 1)cy +4d*cg = 0

e why an extra constraint?

e original constraints ensure boundary CFT is unitary at fixed pts

« away from fixed pts, nonunitary operators “pollute” boundary
theory and c-theorem is lost in general

 additional constraint ensures boundary theory is unitary along
flows, as well as at fixed points

Work In progress!



What is a;??

. rd/2[d=1 2(d — 1 3(d—1
Ag = d—1 o(d—1)/2 (1 - (d ))‘foo — (d ):ufgo>
D(d/2)lE5 fx -3 —9
1 fe

where AdS curvature: —

72 L2 o — foo + M+ pfl =0

o trace anomaly for CFT’s with even d:
(T,") = Z B;(Weyl invariant); — 2(—)% @Euler density)q

o verify that we have precisely reproduced central charge

a;=A

(Henningson & Skenderis; Nojiri & Odintsov; Blau, Narain & Gava,;
Imbimbo, Schwimmer, Theisen & Yankielowicz)

Whatis a, for odd d??
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a;; and Entanglement Entropy (see Kulaxizi's talk)

e introduce a(n arbitrary) boundary dividing the system in two
e integrate out degrees of freedom in outside region
e remaining dof are described by a density matrix pa

——> entanglement entropy: S = —T'r [pa log p]

B

Abounda’ry
Hd—2

 universal information appears in subleading terms:
S= - 4 cqlog(R/0) + --- forevend

o full result sensitive to UV physics: S = ¢




a,; and Entanglement Entropy

 in 1003.5357, studied black hole thermodynamics for
guasi-topological gravity with various horizons: Rd-1, Sd-1 Hd-1
« allows for the following observation:

 place CFT on hyperbolic hyperplane (ie, R X Hd-1)
—> ground-state energy density is now negative
* heat system up until energy density is precisely zero, pg =0

——> entropy density: s = (4m)¥/?T (d/z) a’ 71

2T
= T (/)

L 1

Why entanglement entropy?



aj} and Entanglement Entropy
* CFT on hyperbolic hyperplane Hd1 at finite T tuned to pg =0
—> Dbulk spacetime is pure AdS4,,

* S0 why is there entropy at all??

2 2
d32 f— d,r. ) - (% - 1) dt2 + 7"2 dzg_l

t= const. slice of AdS

r=0c0

entanglement entropy: hyperbolic foliation
divides boundary into two halves

r = const.

e can make precise connection between
horizon entropy of “bh” and entanglement
In boundary CFT

Instead go back to “standard” definition
second asymptotic region



a;; and Entanglement Entropy (see Kulaxizi's talk)

* place boundary CFT on S9! X R, divide sphere in half on an
equator and calculate entanglement entropy

EE Calculation:
1) construct n-fold cover of (euclidean) geometry

2) calculate partition function Z, on this geometry

3) analytically continue Z, to real n

4) calculate entropy:

S =—lim (na— — 1) log 2.,

n—s1 on

« would like to interchange steps 2) & 3) v




a;; and Entanglement Entropy (see Kulaxizi's talk)

* place boundary CFT on S9! X R, divide sphere in half on an
equator and calculate entanglement entropy

EE Calculation:
1) construct n-fold cover of (euclidean) geometry

3) analytically continue geometry to real n

2) calculate partition function Z, on this geometry

4) calculate entropy:

S =—lim (na— — 1) log 2.,

n—s1 on

« would like to interchange steps 2) & 3) v
—> work on geometry with conical defect (n=1+¢)

* this interchange requires angle is a symmetry, but not case here




a;; and Entanglement Entropy (see Kulaxizi's talk)

* place boundary CFT on S9! X R, divide sphere in half on an
equator and calculate entanglement entropy

EE Calculation:
1) construct n-fold cover of (euclidean) geometry

3) analytically continue geometry to real n
2) calculate partition function Z, on this geometry
4) calculate entropy:

, 0
S = —}3_}1]{11 (na—n — 1) log 2.,

» use conformal symmetry to “compactify”:

S+ X R > Sd
* now have desired symmetry and so can calculate as above




CLZ and Entanglement Entropy conical
defect,

o AdS,
S =—lim (n— — 1> log 7,

n—1 on

« AdS/CFT translates to gravity calculation:
Zp =exp|—1 gravity,n] on AdS,,, with S9 boundary

* note we consider completely general covariant gravity action:
I = /ddﬂx\/—g E(gab, R®_ ;. VR 4, ..., matter) 4+ boundary term

 note conical singularity extends through AdS bulk

 regulate singularity and determine response to small deficit
(e.g., Fursaev & Solodukhin, hep-th/9501127)

0L _ab X / d 1z Vh
AdS defect

S = 27 aRadeEfa Eed




ay; and Entanglement Entropy
« we had “expected” S < A from trace anomaly (for even d)

(T, = Z B;(Weyl invariant); — 2(—)% @Euler density)

(Imbimbo, Schwimmer, Theisen & Yankielowicz)

* short cut for holographic type-A trace anomaly:
given any covariant gravitational action:

I = /dde\/—g E(gab, R®_ ;. VR 4, ..., matter) 4+ boundary term

7.‘.cl/2 J4+1

> A =

- L
T (% 4 1) |AdS

7.‘.d/2 J,a+1

o0 (4 4+1)

L| 445 |for even or odd d



a,; and Entanglement Entropy

e consider equations of motion:

I = /ddﬂx\/—g E(ga’b, R®_ 1, VeR™ 4, ..., matter) 4+ boundary term

- make variation of ¢%® and R*’.; “separately”

1 0L 0L
_ _ . 5 ab 5 ab

5}%abcd

with SR, = ¢*¢(V.0T%; — V40T %) + R, ,8¢"°

1
oI,y = §9af(Ve5gfd + Vadgre — Vydgea)

« result of integration by parts hidden in 6£/8¢** and 6£/6 R .4



ay; and Entanglement Entropy
e consider equations of motion:

I = /ddﬂx\/—g E(gab,Rabcd, V.R®.4, .. ., matter) + boundary term

» make variation of ¢** and R¥.. separately”

_ —_»Cga,b 5gab xSQab + 5R b 5Rabcd

with sR?_, :M+ R%,.409"

1
oI,y = §9af(Ve5gfd + Vadgre — Vydgea)

« result of integration by parts hidden in 6£/8¢** and 6£/6 R .4

« evaluate for AdS,,, solution (maximally symmetric, V,|--| =0)

1
5Rabcd — _§(5acged — 5adgec)5gbe



ay; and Entanglement Entropy
e consider equations of motion:

I = /ddﬂx\/—g E(gab,Ra’bcd, V.R®.4, .. ., matter) + boundary term

» make variation of ¢** and R¥.. separately”

_ —_Ega,b 5gab xSQab + 5R b 5Rabcd

with sR?_, :MJF R%,.409"

a 1 Qa
ol = 29 I (Vedgra+Vadgre — V6Gea)

« evaluate for AdS,,, solution (maximally symmetric, V|- -] =




0:2} and Entanglement Entropy

* puzzle pieces:

oL
entanglement entropy: S = —27 ~—— e eed X / d 1z Vh
OR cd AdS defect
t | a; m?/? LA L]
race anomaly: q= —
o (4 +1) 4%
f moti oL 6° L Ll ,.q 6%
eq. of motion: d=——— L1556 07
ORW g AdS 4




entanglement entropy: S = 2d/2 I'(d/2) = ad V(H )ﬁ

du?

1+ u?

ds* = L? [ + u? dﬂg_Ql

“area law” for d-dimensional CFT



entanglement entropy: S = 261/2 I'(d/2) = ad V(H )ﬁ

~ du” d—2

ds* = L? [1+u2 + u® dQS ]
S = - + (=)2 '4a* log (E/d) + --- forevend
o+ (2T 2mal 4 e for odd d

\ J
|

universal contribution




Conjecture:
 place CFT on S9! X R and divide sphere in half along equator

» entanglement entropy of ground state has universal contribution

i (—)%_1 da} log(L/d) foreven d

d—1
(—)2 2maj for odd d

(any gravitational action)

Suniv —

S

 in RG flows between fixed points

(ag)py = (ag)rg
(constrained models)

—> gives framework to consider c-theorem for odd or even d

—— behaviour discovered for holographic model but conjecture
that result applies generally (outside of holography)



and Beyond:

e Susskind & Witten: density of degrees of freedom in N=4 SYM
connected to area of holographic screen at large R in AdS;

N, 3 A(R) cut-off scale defined

X Vg ~ :
3 .-
53 gP by regulator radius: 5= 12

e given higher curvature bulk action, natural extension is to
evaluate Wald entropy on holographic screen at large R

OLyulk
aRabcd

S = —zwj:{dd—la; h %z,



a,; and Entanglement Entropy

* puzzle pieces:
oL _ab _
8Ra’bcd Cd

entanglement entropy: S = —2m

X / d* 1z vh
AdS defect
d/2 l~)d+1

L
oT (g + 1) ‘AdS

sk
trace anomaly: a4 = —

0L
6}%abcd

eq. of motion:

AdS 4



and Beyond:

e Susskind & Witten: density of degrees of freedom in N=4 SYM
connected to area of holographic screen at large R in AdS;

N, 3 A(R) cut-off scale defined

X Vg ~ :
3 L=
53 3, by regulator radius: 5= 12

e given higher curvature bulk action, natural extension is to
evaluate Wald entropy on holographic screen at large R

OLbuik
aRabcd
 With previous results, straightforwardly evaluate “entropy” density

S = —zwj[dd—la; h %z,

for any covariant action: Lyux = Louk (9°° R cdy Ve R cay - )



Conclusions:

 AdS/CFT correspondence (gauge/gravity duality) has proven
an excellent tool to study strongly coupled gauge theories

e toy theories with higher-R interactions extend class of CFT’s
—> maintain calculational control with GB or quasi-top. gravity
 consistency (causality & positive fluxes) constrains couplings

e provide interesting insights into RG flows
 naturally support Cardy’s version of a-theorem with d even

* suggests extension of a-theorem to d odd

« what are details in the “fine print” of a-theorem??
e a;; seems to play a privileged role in holography
o further implications for holographic dualities??

Lots to explore!



