Effective Holographic Theories for Condensed Matter Systems

René Meyer

Department of Physics, University of Crete, Irakleio, Greece

September 15, 2010

ArXiv:1005.4690 (with C. Charmousis, B. Gouteraux, B.-S. Kim and E. Kiritsis)

René	Mever	(UoC)
		()

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Motivation: Strange Metallic Behaviour and Effective Holographic Theories for Condensed Matter Systems
- 2 Uncharged Solutions
- 3 Exact Charged Solutions • $\gamma \delta = 1$
 - $\gamma = \delta$
 - 4 Near-Extremal Scaling Solutions
- 5 Conclusions & Remarks

(4) (5) (4) (5)

A D M A A A M M

- Motivation: Strange Metallic Behaviour and Effective Holographic Theories for Condensed Matter Systems
- 2 Uncharged Solutions
- 3 Exact Charged Solutions • $\gamma \delta = 1$ • $\gamma = \delta$
- 4 Near-Extremal Scaling Solutions
- 5 Conclusions & Remarks

< ロ > < 同 > < 回 > < 回 >

Motivation

Motivation: Strange Metallic Behaviour

- Non-Fermi Liquid Behaviour: High Tc Cuprates (e.g. La_{2-x}Sr_xCuO₄), Heavy Fermion Systems (e.g. CeCu_{5.9}Au_{0.1}), Iron based High Tc compounds (e.g. SmFeAsO_{1-x}F_x)
- Properties of Strange Metal Region:
 - \rightarrow Linear DC Resistivity: $\rho = \rho_0 + AT$ (down to T = 0)
 - \rightarrow AC conductivity scaling: $\sigma(\omega) \sim \omega^{-2/3}$ for $T \ll \omega \ll \Lambda$
 - \rightarrow Electronic Specific Heat and Entropy: $C_{v}, S \sim T$

Motivation

Motivation: Effective Holographic Theories

- <u>EHT:</u> p-dim. strongly coupled EFT $\leftrightarrow p$ + 1-dim. weak gravity
- Minimal Ingredients for a High Tc EHT:
 - Finite Carrier Density: Global U(1) current $J^{\mu} \leftrightarrow$ bulk gauge field A_{μ}
 - Leading Relevant Uncharged Operator: $\mathcal{O}_{\Phi} \leftrightarrow$ bulk scalar Φ
 - Energy-Momentum-Tensor: $T_{\mu
 u} \leftrightarrow$ bulk metric $g_{\mu
 u}$
- Two-Derivative Infrared Effective Holographic Action: (Sugra Intuition)

$$S = M_{Pl}^{p-1} \int d^{p+1} x \sqrt{-g} \left[R - \frac{1}{2} (\partial \Phi)^2 - V(\Phi) - \frac{Z(\Phi)}{4} F_{\mu\nu}^2 \right]$$
$$V(\Phi) = 2\Lambda e^{-\delta \Phi}, \qquad Z(\Phi) = e^{\gamma \Phi}$$

- (Un)Charged Black Hole Solutions: Important Observables
 - Thermodynamics (Entropy, Specific Heat, Phase Transitions)
 - DC/AC conductivities
 - Other transport coefficients, ...

イロト 不得 トイヨト イヨト 二日

On Naked Singularities

- In holography naked singularities may be acceptable, since they might not necessarily signal a breakdown of predictability of the theory, as long as they do not affect the field theory physics severely.
- Gubser gave the first criterion for good singularities : They should be limits of solutions with a regular horizon. [Gubser (2000)]
- The second criterion amounts to having a well-defined spectral problem for fluctuations around the solution: The second order equations describing all fluctuations are Sturm-Liouville problems (no extra boundary conditions needed at the singularity). [Gursoy+E.K.+Nitti (2008)]
- The singularity is "repulsive" (like the Liouville wall). It has an overlap with the previous criterion. It involves the calculation of 'Wilson loops" [Gursoy+E.K.+Nitti (2008)]
- It is not known whether the list is complete.

Motivation

Conductivity & Charged Excitation Spectra I

 Conductivity is a main characteristic transport coefficient in a finite density system.

$$J^{i}(\omega,\vec{k})=\sigma^{ij}(\omega,\vec{k}) E_{j}(\omega,\vec{k})$$

• Can be calculated from a Kubo formula (in linear response)

$$\sigma^{ij}(\omega, \vec{k}) = rac{G_R^{ij}(\omega, \vec{k})}{i\omega}$$

Various limits are of experimental importance

$$\vec{k} \to 0 \to \sigma^{ij}(\omega, T) \to AC$$
 conductivity
 $\omega \to 0$ and $\vec{k} \to 0 \to \sigma^{ij}(T) \to DC$ conductivity

< ロ > < 同 > < 回 > < 回 >

Motivation

Conductivity & Charged Excitation Spectra II

The linear response calculation at $\vec{k} = 0$ can, in holography, be recast as a Schrödinger problem [Horowitz, Roberts 2009]. In the backreacted background

$$ds^{2} = -D(r)dt^{2} + B(r)dr^{2} + C(r)(dx_{i}dx^{i}), \quad A'_{t} = q \frac{\sqrt{D(r)B(r)}}{Z(\phi)C(r)^{\frac{p-1}{2}}}$$

we must turn on perturbations

$$A_i = a_i(r)e^{i(\omega t)}, g_{ti}(r, t) = z_i(r)e^{i\omega t}$$

From Einstein and Maxwell, we obtain a second order equation

$$\partial_r \left(ZC^{\frac{p-3}{2}} \sqrt{\frac{D}{B}} a_i' \right) + ZC^{\frac{p-3}{2}} \left(\sqrt{\frac{B}{D}} \omega^2 - \frac{q^2 \sqrt{DB}}{ZC^{p-1}} \right) a_i = 0$$

It can be mapped to a Schrödinger equation

$$-\frac{d^2\Psi}{dz^2} + V_{eff}\Psi = \omega^2\Psi \,, \quad V_{eff} = \frac{q^2D}{ZC^{p-1}} + \frac{1}{4}\left(\frac{\partial_z\bar{Z}}{\bar{Z}}\right)^2 + \frac{1}{2}\partial_z\frac{\partial_z\bar{Z}}{\bar{Z}} \,, \quad \bar{Z} = ZC\frac{p-3}{2}$$

via a coordinate and wave function redefinition

$$rac{dz}{dr} = \sqrt{rac{B}{D}} \;, \quad a_i = rac{\Psi}{\sqrt{Z}} \;.$$

イロト 不得 トイヨト イヨト 二日

Conductivity & Charged Excitation Spectra III

The frequency dependent conductivity is given by [Roberts+Horowitz (2009), Kachru et.al. (2009)]

$$\sigma(\omega) = \frac{1 - \mathcal{R}}{1 + \mathcal{R}} - \frac{i}{2\omega} \frac{\dot{Z}}{Z} \Big|_{\text{boundary}}$$

The second term always vanishes in our cases. Several situations can now occur:

- $V \rightarrow 0$ in IR: Conductor, continuous spectrum
- $V \rightarrow V_0$ in IR: Conductor with continuous spectrum and mass gap
- V → ∞ in IR, but not UV: Insulator with continuous spectrum (for p = 3 and Δ ≥ 1, with gap for Δ = 1)
- $V \rightarrow \infty$ in both IR and UV: Insulator with discrete spectrum and mass gap (confined phase) (for p > 3 or p = 3 and $\Delta < 1$)

イロト 不得 トイヨト イヨト ヨー ろくの

Motivation: Strange Metallic Behaviour and Effective Holographic Theories for Condensed Matter Systems

Uncharged Solutions

- 3 Exact Charged Solutions • $\gamma \delta = 1$ • $\gamma = \delta$
- 4 Near-Extremal Scaling Solutions
- 5 Conclusions & Remarks

Uncharged Solutions

Uncharged Solutions

Two Solutions with "good" IR singularities: ۲

[Gubser hep-th/0002160]

Small Planar Black Holes:

$$ds^{2} = r^{\frac{4}{(p-1)\delta^{2}}} \left(-f(r)dt^{2} + d\bar{x}^{2}\right) + \frac{dr^{2}}{f(r)}$$

$$f(r) = 1 - \left(\frac{r_{0}}{r}\right)^{\frac{2p}{(p-1)\delta^{2}} - 1}, \quad e^{\delta\Phi} = \frac{|\Lambda|\delta^{4}}{\frac{2p}{(p-1)} - \delta^{2}}r^{2}$$

$$ure: \qquad \left[4\pi T = \left(\frac{2p}{(p-1)\delta^{2}} - 1\right)r_{0}^{\frac{2}{(p-1)\delta^{2}} - 1} \right]$$

$$\frac{2}{p-1}: T \xrightarrow{r_{0} \to 0} 0$$

$$2 \to T \xrightarrow{r_{0} \to 0} p-1$$

- Temperatu
- \rightarrow A) $\delta^2 < \frac{1}{2}$
- \rightarrow B) $\delta^2 = \frac{2}{p-1}$: $T \stackrel{r_0 \rightarrow v}{\rightarrow} \frac{p-1}{4\pi}$ ightarrow C) $\delta^2 > rac{2}{D-1}$: $T \stackrel{r_0
 ightarrow 0}{
 ightarrow} \infty$
- Thermal Gas Solution: $f(r) \equiv 1$
- AdS UV completion: $V_{full}(\Phi) \stackrel{IR}{\sim} e^{-\delta\Phi}$, AdS Minimum in UV \rightarrow Large Planar Black Hole Branch for large r_0 with $T \sim r_0$

René Mever (UoC)

EHTCMS

Uncharged Solutions

- A) $\delta^2 < \frac{2}{p-1}$: continuous PTs at $T = 0_+$, continuous & gapless spectrum
- B) δ² = ²/_{p-1}: continuous PT at T_{min} = ^{p-1}/_{4π} depending on subleading terms in V(Φ) (nth order or KT) [U. Gursoy's talk], continuous & gapped
- C) $\delta^2 > \frac{2}{\rho-1}$: 1st order deconfinement transition, Insulator/Conductor
- D) $\frac{2p}{p-1} > \delta^2 > \frac{2(p+2)}{3(p-1)}$ Graviton fluctuation problem unacceptable
- E) $\delta^2 > \frac{2p}{p-1}$: Gubser's criterion violated

René Meyer (UoC)

Uncharged Solutions: AC/DC Conductivity

• Probe DBI calculation yields $(g^S = e^{k\Phi}g^E, \kappa = \frac{4\pi}{\left(\frac{2p}{(2-1)\kappa^2}-1\right)})$

$$\sigma_{xx} = e^{-k\phi_0}(\kappa T)^{\frac{2k(\rho-1)\delta+4}{(\rho-1)\delta^2-2}} \sqrt{\langle J^t \rangle^2 + e^{2(\gamma+k)\phi_0}(\kappa T)^{\frac{4(\rho-1)[1+(\gamma+k)\delta]}{2-(\rho-1)\delta^2}}}$$

- At low densities : $\rho \sim T^{\frac{2(\rho-1)\gamma\delta+2(\rho-3)}{(\rho-1)\delta^2-2}}$, $\gamma_{\text{linear}} \equiv \frac{\delta^2 \frac{2(\rho-2)}{(\rho-1)}}{2\delta}$ (indep. of *k*)
- At high densities : $\rho \sim T^{\frac{2k(p-1)\delta+4}{2-(p-1)\delta^2}} \langle J^t \rangle$ (cannot be linear in the range $\delta^2 < 2(p+2)/(3(p-1))$)

 \clubsuit Interpolation between $\ \rho \sim {\it T}$ (NFL) and $\rho \sim {\it T}^2$ (FL) for $\delta = -{\it k}$

• Dragging string : $\rho \simeq \frac{T_{t}g_{xx}^{\mathcal{E}}(r_{h})e^{k\Phi(r_{h})}}{J^{t}}, \quad S \sim g_{xx}^{\mathcal{E}}(r_{h})^{\frac{p-1}{2}}$ $\Rightarrow \left[\rho \sim S \sim C_{V} \quad \text{for} \quad p = 3, k = 0\right]$

• AC conductivity at zero temperature ($\omega \gg T,\, p=3$): [Kachru et. al. (2009)]

$$\sigma \sim \omega^n, n = -\frac{2}{3} \text{ for } \gamma = \left\{ \frac{\delta^2 - 1}{3\delta}, \frac{2(\delta^2 - 1)}{3\delta} \right\}$$

イロト 不得 トイヨト イヨト ヨー ろくの

- Motivation: Strange Metallic Behaviour and Effective Holographic Theories for Condensed Matter Systems
- 2 Uncharged Solutions
- 3 Exact Charged Solutions • $\gamma \delta = 1$ • $\gamma = \delta$
- 4 Near-Extremal Scaling Solutions
- 5 Conclusions & Remarks

 $\gamma \delta = 1$

An exact charged solution for $\gamma\delta=1$ [Charmousis et.al. 0905.3337]

$$\begin{split} \mathrm{d}s^2 &= -e^{\Phi/\delta} \, V(r) \frac{\mathrm{d}t^2}{r^2} + e^{\delta\Phi} \frac{\mathrm{d}r^2}{V(r)} + r^{3-\delta^2} e^{\frac{\delta^2-1}{2\delta}\Phi} (\mathrm{d}x^2 + \mathrm{d}y^2) \\ V(r) &= r^2 - 2mr^{\delta^2-1} + \frac{(1+\delta^2)q^2}{4\delta^2(3-\delta^2)^2} r^{2\delta^2-4} \,, \quad e^{\Phi} = r^{2\delta} \left[1 - \left(\frac{r_-}{r}\right)^{3-\delta^2} \right]^{\frac{4\delta(\delta^2-1)}{(3-\delta^2)(1+\delta^2)}} \\ (r_{\pm})^{3-\delta^2} &= m \pm \sqrt{m^2 - \frac{(1+\delta^2)q^2}{4\delta^2(3-\delta^2)^2}} \,, \quad A_t = \mu - \frac{q}{(3-\delta^2)r^{3-\delta^2}} \end{split}$$

- For Black Hole Solutions: $\Lambda < 0$ and $\delta^2 < 3$ (cf. Gubser)
- AdS completable for all δ
- AdS-Schwarzschild Limit: $\delta \rightarrow 0, q \rightarrow 0$

 $\gamma \delta = 1$

$\gamma \delta = 1$: Solution Branches

• Temperature:
$$T = (3 - \delta^2) r_+^{1 - \delta^2} \left[1 - \frac{4(1 + \delta^2)Q^2}{\delta^2 (3 - \delta^2)^2 r_+^{2(3 - \delta^2)}} \right]^{1 - \frac{2(\delta^2 - 1)^2}{(1 + \delta^2)(3 - \delta^2)}}$$

- A) $\delta^2 \leq 1$: T = 0 at Extremality
- B) $1 < \delta^2 < 1 + \frac{2}{\sqrt{3}}$: Two branches (SBH/LBH) + AdS-LBHs
- C) $1 + \frac{2}{\sqrt{3}} \le \delta^2 < 3$: *T* diverges at extremality, but AdS-LBHs take over

$\gamma \delta = 1$

$\gamma \delta = 1$: Phases and Low-Temperature Scaling

• Finite Q, $T \rightarrow 0_+$:

- 2nd order phase transition for $1 \frac{2}{\sqrt{5}} < \delta^2 < 1 + \frac{2}{\sqrt{5}}$
- 3rd or higher order otherwise
- No residual entropy at zero temperature

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\gamma \delta = 1$: Transport Properties

• In the first two regimes $0 \le \delta^2 \le 1 + \frac{2}{\sqrt{3}}$, the AC conductivity is

DC resistivity from the dragging string calculation: At low temperatures

$$\rho_{\text{leading}} \sim \frac{T_f}{Jt} \left(\frac{q}{\ell}\right)^{\frac{2\delta(\delta(3-\delta^2)+(1+\delta^2)k)}{1+6\delta^2-3\delta^4}} \left(\ell T\right)^{\frac{2(\delta^2-1)(\delta^2-1+2k\delta)}{1+6\delta^2-3\delta^4}}$$

This is linear in temperature at k = 0 for $\delta^2 = 1 \pm \frac{2}{\sqrt{5}}$. We thus find

 $m{S} \sim m{C}_{m{Q}} \sim m{T} \sim
ho_{m{D}m{C}}$

[Loram et. al. PRL 71 11 (1993)]

 The Karch/O'Bannon probe DBI calculation does not make sense in backreacted backgrounds.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\gamma = \delta$

$\gamma = \delta$: RN-Like Charged Dilaton Black Holes

$$\begin{aligned} ds^2 &= -V(r)dt^2 + e^{\delta\Phi} \frac{dr^2}{V(r)} + r^2(dx^2 + dy^2) \\ V(r) &= r^2 - 2mr^{\delta^2 - 1} + \frac{q^2}{4(1 + \delta^2)r^2}, \quad e^{\Phi} = r^{2\delta}, \quad r_e^4 = \frac{q^2}{4(3 - \delta^2)} \\ A_t &= \mu - \frac{q}{(1 + \delta^2)r^{1 + \delta^2}} \end{aligned}$$

- For Black Hole Solutions: $\Lambda < 0$ and $\delta^2 < 3$ [Charmousis et.al. 0905.3337]
- AdS completable for all δ
- Coincides with $\gamma \delta = 1$ for $\gamma = \delta = 1$
- AdS-RN Limit: $\delta, \gamma \rightarrow 0$
- <u>Residual Entropy</u>: $S = r_e^2 \simeq r_e^2 + \frac{T}{2} \frac{r_e^{1+\delta^2}}{3-\lambda^2} + \dots$

$$C_Q \simeq rac{T}{2} rac{r_e^{1+\delta^2}}{3-\delta^2} + \dots, \quad
ho_{DC} \simeq
ho_0 + AT + \dots$$

Image: A matrix

Exact Charged Solutions $\gamma = \delta$

$\gamma = \delta$: Solution Branches and Phase Diagram

• $Q > 0, T \rightarrow 0_+$: EBHs dominate, no phase transition

• $T > 0, Q \rightarrow 0_+$:

- $\delta^2 < 1$: 2nd order phase transition to NBHs
- $\delta^2 > 1$: 1st order phase transition to EBHs
- AC Conductivity : $\sigma \sim \omega^2 \; \forall \delta$

A B F A B F

- Motivation: Strange Metallic Behaviour and Effective Holographic Theories for Condensed Matter Systems
- 2 Uncharged Solutions
- 3 Exact Charged Solutions • $\gamma \delta = 1$ • $\gamma = \delta$
- 4 Near-Extremal Scaling Solutions
- 5 Conclusions & Remarks

< ロ > < 同 > < 回 > < 回 >

Near-Extremal Scaling Solutions

• Near-Extremal Approximations to $\gamma \delta = 1$ and $\gamma = \delta$

• Lifshitz cases: $\delta = 0, z = 1 + \frac{4}{\gamma^2}$

[M. Taylor, 0812.0530]

- Entropy: $S \sim (2m)^{\frac{2(\gamma-\delta)^2}{WU}} \rightarrow 0$ except for $\gamma = \delta$
- Multitude of continuous $T \rightarrow 0_+$ Phase Transitions

・ロト ・ 一 ・ モート ・ ヨー ・ つ へ つ

Near-Extremal Scaling Solutions

Spin 2 and Spin 1 constraints

Reliability constraints on the spin-2 fluctuations for p = 3 and p = 4. The blue region depicts the part of the (γ, δ) plane which satisfies Gubsers constraint. The yellow-brownish and purple regions are the allowed regions from spin 2 fluctuations. The purple region furthermore is thermodynamically unstable, and will be stabilised after AdS completion. This touches the Gubser allowed region for p = 3 in the point $(\pm 1, \mp 1)$, and has a small overlap for p = 4.

EHTCMS

Near-Extremal Scaling Solutions

The extremal AC conductivity in p = 3

Contour plot of the scaling exponent *n* in the (γ, δ) upper half plane for p = 3 Contours correspond to n = 1.52, ..., 8.36, starting with n = 1.52 in the upper right corner and increasing in steps of 0.76. The black solid line $\gamma = \delta$ is n = 2, and brighter colors correspond to larger *n*. The yellow region is thermodynamically unstable. The scaling exponent diverges to $+\infty$ along the dashed black line.

René Meyer (UoC)

EHTCMS

September 15, 2010 24 / 29

Mott-like States for p = 3

Left: The region on the $(\gamma \delta)$ plane where the IR black holes are unstable and the c > 0. Here the extremal finite density system has a mass gap and a discrete spectrum of charged excitations, when $\Delta < 1$. This resembles a Mott insulator and the figure provides the Mott insulator "islands" in the (γ, δ) plane. Right: The region where the IR black holes are unstable, and c < 0. In this region the extremal finite density system has a gapless continuous spectrum at zero temperature. In both figures the horizontal axis parametrizes γ , whereas the vertical axis δ .

Near-Extremal DC Conductivity

René Mever (UoC)

For massive charge carriers the drag force calculation yields (p = 3)

$$ho \sim T^m$$
, $m = rac{4k(\delta - \gamma) + 2(\delta - \gamma)^2}{4(1 - \delta(\delta - \gamma)) + (\delta - \gamma)^2}$

• The exponent becomes unity for two values of γ

$$\gamma_{\pm} = 3\delta + 2k \pm 2\sqrt{1 + (\delta + k)^2}$$

• For a non-dilatonic scalar, k = 0 and the temperature dependence of the entropy and the resistivity are the same in p = 3. Therefore, the entropy also scales linearly with T.

• For the Lifshitz solutions, we must take $\delta = 0$ and $\gamma = -\sqrt{\frac{4}{(z-1)}}$. In this case we obtain that $m = \frac{2+k\sqrt{4(z-1)}}{z}$. When k = 0 this is in agreement with [Hartnoll+Polchinski+Silverstein+Tong]

EHTCMS

September 15, 2010

26/29

Domination of Charged Entropy

In the shaded region, the entropy at finite charge density dominates the one for zero density at very low temperatures. In the rest of the (γ, δ) diagram, the comparison cannot be made as both entropies are expected to be of $\mathcal{O}(1)$ instead of $\mathcal{O}(N^2)$. The vertical axis represents the value of δ , while the horizontal axis the value of γ .

René Meyer (UoC)

- Motivation: Strange Metallic Behaviour and Effective Holographic Theories for Condensed Matter Systems
- 2 Uncharged Solutions
- 3 Exact Charged Solutions • $\gamma \delta = 1$ • $\gamma = \delta$
- 4 Near-Extremal Scaling Solutions
- 5 Conclusions & Remarks

Conclusions & Remarks

- Einstein-Maxwell-Neutral Scalar Theory is a good laboratory for strange metallic behaviour
- Describe: Interactions between a charged carrier sector and a leading relevant operator ("glue") \rightarrow substrate in the High T_c normal state
- Interesting phase structures of uncharged and (fully backreacted) charged solutions of our system
- Uncharged solutions: 1st order (De)confinement phase transitions appear with discrete and gapped spectra [Kiritsis, Gursoy, Nitti, Mazzanti on AdS/QCD]
- Charged solutions: Generically conductors, appearance of Mott-like insulating (confining) behaviour delayed to higher values of δ
- Well-definedness of the fluctuation problem poses interesting constraints on parameter space
- Continuous phase transitions at zero temperature (and charge)
- No residual entropy except for $\gamma = \delta$, charged entropy dominance
- Correlation between low-temperature scaling of entropy, (electronic) specific heat and DC resistivity observed in experiments = + = = - > = - >

 René Meyer (UoC)
 EHTCMS
 September 15, 2010
 29/29