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Motivation

Motivation: Strange Metallic Behaviour
Non-Fermi Liquid Behaviour: High Tc Cuprates (e.g. La2−xSrxCuO4),
Heavy Fermion Systems (e.g. CeCu5.9Au0.1), Iron based High Tc
compounds (e.g. SmFeAsO1−xFx )

Properties of Strange Metal Region:
→ Linear DC Resistivity: ρ = ρ0 + AT (down to T = 0)
→ AC conductivity scaling: σ(ω) ∼ ω−2/3 for T � ω � Λ
→ Electronic Specific Heat and Entropy: Cv ,S ∼ T

[Loram et. al. PRL 71, 11, 1993]
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Motivation

Motivation: Effective Holographic Theories

EHT: p-dim. strongly coupled EFT ↔ p + 1-dim. weak gravity

Minimal Ingredients for a High Tc EHT:
• Finite Carrier Density: Global U(1) current Jµ ↔ bulk gauge field Aµ
• Leading Relevant Uncharged Operator: OΦ ↔ bulk scalar Φ
• Energy-Momentum-Tensor: Tµν ↔ bulk metric gµν
Two-Derivative Infrared Effective Holographic Action: (Sugra Intuition)

S = Mp−1
Pl

∫
dp+1x

√
−g
[
R − 1

2
(∂Φ)2 − V (Φ)− Z (Φ)

4
F 2
µν

]
V (Φ) = 2Λe−δΦ , Z (Φ) = eγΦ

(Un)Charged Black Hole Solutions: Important Observables
• Thermodynamics (Entropy, Specific Heat, Phase Transitions)
• DC/AC conductivities
• Other transport coefficients, ...
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Motivation

On Naked Singularities

In holography naked singularities may be acceptable, since they might
not necessarily signal a breakdown of predictability of the theory, as long
as they do not affect the field theory physics severely.

Gubser gave the first criterion for good singularities : They should be
limits of solutions with a regular horizon. [Gubser (2000)]

The second criterion amounts to having a well-defined spectral problem
for fluctuations around the solution: The second order equations
describing all fluctuations are Sturm-Liouville problems (no extra
boundary conditions needed at the singularity). [Gursoy+E.K.+Nitti (2008)]

The singularity is “repulsive" (like the Liouville wall). It has an
overlap with the previous criterion. It involves the calculation of ‘ ‘Wilson
loops" [Gursoy+E.K.+Nitti (2008)]

It is not known whether the list is complete.
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Motivation

Conductivity & Charged Excitation Spectra I

Conductivity is a main characteristic transport coefficient in a finite
density system.

J i (ω,~k) = σij (ω,~k) Ej (ω,~k)

Can be calculated from a Kubo formula (in linear response)

σij (ω,~k) =
Gij

R(ω,~k)

iω

Various limits are of experimental importance

~k → 0 → σij (ω,T ) → AC conductivity

ω → 0 and ~k → 0 → σij (T ) → DC conductivity
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Motivation

Conductivity & Charged Excitation Spectra II
The linear response calculation at~k = 0 can, in holography, be recast as a Schrödinger problem [Horowitz, Roberts 2009] . In
the backreacted background

ds2 = −D(r)dt2 + B(r)dr2 + C(r)(dxi dx i ) , A′t = q

√
D(r)B(r)

Z (φ)C(r)
p−1

2

we must turn on perturbations
Ai = ai (r)ei(ωt)

, gti (r, t) = zi (r)eiωt

From Einstein and Maxwell, we obtain a second order equation

∂r

ZC
p−3

2

√
D

B
a′i

 + ZC
p−3

2

√ B

D
ω

2 −
q2√DB

ZCp−1

 ai = 0

It can be mapped to a Schrödinger equation

−
d2Ψ

dz2
+ Veff Ψ = ω

2Ψ , Veff =
q2D

ZCp−1
+

1

4

(
∂z Z̄

Z̄

)2

+
1

2
∂z
∂z Z̄

Z̄
, Z̄ = ZC

p−3
2

via a coordinate and wave function redefinition

dz

dr
=

√
B

D
, ai =

Ψ
√

Z̄
.
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Motivation

Conductivity & Charged Excitation Spectra III

The frequency dependent conductivity is given by [Roberts+Horowitz (2009), Kachru et.al.

(2009)]

σ(ω) =
1−R
1 +R

− i
2ω

Ż
Z

∣∣∣
boundary

The second term always vanishes in our cases. Several situations can now
occur:

V → 0 in IR: Conductor, continuous spectrum

V → V0 in IR: Conductor with continuous spectrum and mass gap

V →∞ in IR, but not UV: Insulator with continuous spectrum (for p = 3
and ∆ ≥ 1, with gap for ∆ = 1)

V →∞ in both IR and UV: Insulator with discrete spectrum and mass
gap (confined phase) (for p > 3 or p = 3 and ∆ < 1)
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Uncharged Solutions

Uncharged Solutions

Two Solutions with “good” IR singularities: [Gubser hep-th/0002160]

• Small Planar Black Holes:

ds2 = r
4

(p−1)δ2
(
−f (r)dt2 + d~x2

)
+

dr2

f (r)

f (r) = 1−
( r0

r

) 2p
(p−1)δ2 −1

, eδΦ =
|Λ|δ4

2p
(p−1)

− δ2
r2

• Temperature: 4πT =
(

2p
(p−1)δ2 − 1

)
r

2
(p−1)δ2−1

0

→ A) δ2 < 2
p−1 : T r0→0→ 0

→ B) δ2 = 2
p−1 : T r0→0→ p−1

4π

→ C) δ2 > 2
p−1 : T r0→0→ ∞

• Thermal Gas Solution: f (r) ≡ 1

AdS UV completion: Vfull (Φ)
IR∼ e−δΦ, AdS Minimum in UV

→ Large Planar Black Hole Branch for large r0 with T ∼ r0
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Uncharged Solutions

Uncharged Solutions

T

r

min

c

o

T

T

A) δ2 < 2
p−1 : continuous PTs at T = 0+, continuous & gapless spectrum

B) δ2 = 2
p−1 : continuous PT at Tmin = p−1

4π depending on subleading
terms in V (Φ) (nth order or KT) [U. Gursoy’s talk] , continuous & gapped

C) δ2 > 2
p−1 : 1st order deconfinement transition, Insulator/Conductor

D) 2p
p−1 > δ2 >

2(p+2)
3(p−1)

Graviton fluctuation problem unacceptable

E) δ2 > 2p
p−1 : Gubser’s criterion violated
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Uncharged Solutions

Uncharged Solutions: AC/DC Conductivity

Probe DBI calculation yields (gS = ekΦgE , κ = 4π(
2p

(p−1)δ2−1
) )

σxx = e−kφ0 (κT )
2k(p−1)δ+4
(p−1)δ2−2

√
〈J t〉2 + e2(γ+k)φ0 (κT )

4(p−1)[1+(γ+k)δ]

2−(p−1)δ2

♠ At low densities : ρ ∼ T
2(p−1)γδ+2(p−3)

(p−1)δ2−2 , γlinear ≡
δ2− 2(p−2)

(p−1)

2δ (indep. of k )

♠ At high densities : ρ ∼ T
2k(p−1)δ+4
2−(p−1)δ2 〈J t〉 (cannot be linear in the range

δ2 < 2(p + 2)/(3(p − 1)))
♠ Interpolation between ρ ∼ T (NFL ) and ρ ∼ T 2 (FL ) for δ = −k

Dragging string : ρ ' Tf gE
xx (rh)ekΦ(rh)

J t , S ∼ gE
xx (rh)

p−1
2

⇒ ρ ∼ S ∼ CV for p = 3 , k = 0

AC conductivity at zero temperature (ω � T , p = 3): [Kachru et. al. (2009)]

σ ∼ ωn ,n = − 2
3 for γ =

{
δ2−1

3δ , 2(δ2−1)
3δ

}
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Exact Charged Solutions γδ = 1

An exact charged solution for γδ = 1 [Charmousis et.al. 0905.3337]

ds2 = −eΦ/δV (r)
dt2

r2
+ eδΦ dr2

V (r)
+ r3−δ2

e
δ2−1

2δ Φ
(dx2 + dy2)

V (r) = r2 − 2mrδ
2−1 +

(1 + δ2)q2

4δ2(3− δ2)2
r2δ2−4

, eΦ = r2δ

1−
( r−

r

)3−δ2


4δ(δ2−1)

(3−δ2)(1+δ2)

(
r±
)3−δ2

= m ±

√√√√m2 −
(1 + δ2)q2

4δ2(3− δ2)2
, At = µ−

q

(3− δ2)r3−δ2

For Black Hole Solutions: Λ < 0 and δ2 < 3 (cf. Gubser)

AdS completable for all δ

AdS-Schwarzschild Limit: δ → 0, q → 0
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Exact Charged Solutions γδ = 1

γδ = 1: Solution Branches

Temperature: T = (3− δ2)r1−δ2

+

[
1− 4(1+δ2)Q2

δ2(3−δ2)2r2(3−δ2)
+

]1− 2(δ2−1)2

(1+δ2)(3−δ2)

• A) δ2 ≤ 1: T = 0 at Extremality
• B) 1 < δ2 < 1 + 2√

3
: Two branches (SBH/LBH) + AdS-LBHs

• C) 1 + 2√
3
≤ δ2 < 3: T diverges at extremality, but AdS-LBHs take over

∆2 � 2.5

∆2 � 1 +
2

3

∆2 � 1.5

∆2 � 1

∆2 � 0.5

Q = 0.1

Ph
LBHSBH

0.5 1.0 1.5 2.0 2.5 3.0
r+

1

2

3

4

T

Spectrum

0 ≤ δ2 < 1 + 2√
3

: Conductor

1 + 2√
3
≤ δ2 < 5+

√
33

4 : V ∼ |c|/z2 ⇒
Mott-like insulator

5+
√

33
4 < δ2 < 3 : V ∼ −|c|/z2 ⇒

Conductor
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Exact Charged Solutions γδ = 1

γδ = 1: Phases and Low-Temperature Scaling

δ2 ≤ 1 1 < δ2 < 1 + 2√
3

0
Q

T

CBH

EBH

NBH

0
Q

T

SBH

EBH

EBH

TPhHQPhL

Finite Q,T → 0+ :
• 2nd order phase transition for 1− 2√

5
< δ2 < 1 + 2√

5
• 3rd or higher order otherwise

No residual entropy at zero temperature
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Exact Charged Solutions γδ = 1

γδ = 1: Transport Properties
In the first two regimes 0 ≤ δ2 ≤ 1 + 2√

3
, the AC conductivity is

σ(ω) ∼ ωn , n = (3−δ2)(5δ2+1)
|3δ4−6δ2−1|

0.5 1.0 1.5 2.0 2.5 3.0
∆

2

2

4

6

8

10

n

DC resistivity from the dragging string calculation: At low temperatures

ρleading ∼
Tf

J t

(q
`

) 2δ(δ(3−δ2)+(1+δ2)k)

1+6δ2−3δ4
(`T )

2(δ2−1)(δ2−1+2kδ)

1+6δ2−3δ4

This is linear in temperature at k = 0 for δ2 = 1± 2√
5

. We thus find

S ∼ CQ ∼ T ∼ ρDC [Loram et. al. PRL 71 11 (1993)]

The Karch/O’Bannon probe DBI calculation does not make sense in
backreacted backgrounds.
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Exact Charged Solutions γ = δ

γ = δ: RN-Like Charged Dilaton Black Holes

ds2 = −V (r)dt2 + eδΦ dr2

V (r)
+ r2(dx2 + dy2)

V (r) = r2 − 2mrδ
2−1 +

q2

4(1 + δ2)r2
, eΦ = r2δ

, r4
e =

q2

4(3− δ2)

At = µ−
q

(1 + δ2)r1+δ2

For Black Hole Solutions: Λ < 0 and δ2 < 3 [Charmousis et.al. 0905.3337]

AdS completable for all δ

Coincides with γδ = 1 for γ = δ = 1

AdS-RN Limit: δ, γ → 0

Residual Entropy: S = r2
+'r2

e + T
2

r1+δ2
e

3−δ2 + . . .

CQ ' T
2

r1+δ2
e

3−δ2 + . . . , ρDC ' ρ0 + AT + . . .
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Exact Charged Solutions γ = δ

γ = δ: Solution Branches and Phase Diagram

δ2 ≤ 1

0
Q

T

CBH

EBH

NBH

1 < δ2 < 3

0
Q

T

SBH

EBH

EBH

TPhHQPhL

Q > 0,T → 0+ : EBHs dominate, no phase transition

T > 0,Q → 0+ :

δ2 < 1 : 2nd order phase transition to NBHs
δ2 > 1 : 1st order phase transition to EBHs

AC Conductivity : σ ∼ ω2 ∀δ
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Near-Extremal Scaling Solutions

Near-Extremal Scaling Solutions

ds2 = r
(γ−δ)2

2
[
−f (r)dt2 + d~x2

]
+

dr2

f (r)

f (r) =
16(−Λ)

wu2
r1+ 3

4 (γ−δ)2 (
r

wu
4 − 2m

)

eΦ = rδ−γ , At = µ +
8

wu

√
vΛ

u
r

wu
4

u = γ
2 − γδ + 2 , v = δ

2 − γδ − 2

wu = 3γ2 − δ2 − 2γδ + 4
δ2<3
> 0

Near-Extremal Approximations to γδ = 1 and γ = δ

Lifshitz cases: δ = 0, z = 1 + 4
γ2 [M. Taylor, 0812.0530]

Entropy: S ∼ (2m)
2(γ−δ)2

wu → 0 except for γ = δ

Multitude of continuous T → 0+ Phase Transitions
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Near-Extremal Scaling Solutions

Spin 2 and Spin 1 constraints

Reliability constraints on the spin-2 fluctuations for p = 3 and p = 4. The blue region depicts the part of the (γ, δ) plane which

satisfies Gubsers constraint. The yellow-brownish and purple regions are the allowed regions from spin 2 fluctuations. The purple

region furthermore is thermodynamically unstable, and will be stabilised after AdS completion. This touches the Gubser allowed

region for p = 3 in the point (±1,∓1), and has a small overlap for p = 4.
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Near-Extremal Scaling Solutions

The extremal AC conductivity in p = 3

σ ∼ ωn , n =

∣∣∣∣ (δ − γ)(3γ + 5δ)− 12
(δ − γ)(γ + 3δ)− 4

∣∣∣∣− 1

Contour plot of the scaling exponent n in the (γ, δ) upper half plane for p = 3 Contours correspond to n = 1.52, . . . , 8.36,

starting with n = 1.52 in the upper right corner and increasing in steps of 0.76. The black solid line γ = δ is n = 2, and brighter

colors correspond to larger n. The yellow region is thermodynamically unstable. The scaling exponent diverges to +∞ along the

dashed black line.
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Near-Extremal Scaling Solutions

Mott-like States for p = 3

-4 -2 0 2 4

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-4 -2 0 2 4

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Left: The region on the (γδ) plane where the IR black holes are unstable and the c > 0. Here the extremal finite density system

has a mass gap and a discrete spectrum of charged excitations, when ∆ < 1. This resembles a Mott insulator and the figure

provides the Mott insulator “islands" in the (γ, δ) plane. Right: The region where the IR black holes are unstable, and c < 0. In

this region the extremal finite density system has a gapless continuous spectrum at zero temperature. In both figures the

horizontal axis parametrizes γ, whereas the vertical axis δ.
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Near-Extremal Scaling Solutions

Near-Extremal DC Conductivity

For massive charge carriers the drag force calculation yields (p = 3)

ρ ∼ T m , m =
4k(δ − γ) + 2(δ − γ)2

4(1− δ(δ − γ)) + (δ − γ)2

The exponent becomes unity for two values of γ

γ± = 3δ + 2k ± 2
√

1 + (δ + k)2 .

For a non-dilatonic scalar, k = 0 and the temperature dependence of the
entropy and the resistivity are the same in p = 3. Therefore, the entropy
also scales linearly with T.

For the Lifshitz solutions, we must take δ = 0 and γ = −
√

4
(z−1) . In this

case we obtain that m =
2+k
√

4(z−1)

z . When k = 0 this is in agreement
with [ Hartnoll+Polchinski+Silverstein+Tong]
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Near-Extremal Scaling Solutions

Domination of Charged Entropy

Sq ∼ T 2 (γ−δ)2

wu−(γ−δ)2 , Sn ∼ T
2

1−δ2

-4 -2 0 2 4

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

In the shaded region, the entropy at finite charge density dominates the one for zero density at very low temperatures. In the rest

of the (γ, δ) diagram, the comparison cannot be made as both entropies are expected to be ofO(1) instead ofO(N2). The

vertical axis represents the value of δ, while the horizontal axis the value of γ.
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Conclusions & Remarks

Conclusions & Remarks
Einstein-Maxwell-Neutral Scalar Theory is a good laboratory for strange
metallic behaviour

Describe: Interactions between a charged carrier sector and a leading
relevant operator (“glue”)→ substrate in the High Tc normal state

Interesting phase structures of uncharged and (fully backreacted)
charged solutions of our system

Uncharged solutions: 1st order (De)confinement phase transitions
appear with discrete and gapped spectra [Kiritsis, Gursoy, Nitti, Mazzanti on AdS/QCD]

Charged solutions: Generically conductors, appearance of Mott-like
insulating (confining) behaviour delayed to higher values of δ

Well-definedness of the fluctuation problem poses interesting constraints
on parameter space

Continuous phase transitions at zero temperature (and charge)

No residual entropy except for γ = δ, charged entropy dominance

Correlation between low-temperature scaling of entropy, (electronic)
specific heat and DC resistivity observed in experiments
René Meyer (UoC) EHTCMS September 15, 2010 29 / 29


	Motivation: Strange Metallic Behaviour and Effective Holographic Theories for Condensed Matter Systems
	Uncharged Solutions
	Exact Charged Solutions
	= 1
	=

	Near-Extremal Scaling Solutions
	Conclusions & Remarks

