Holographic Hydrodynamics from 5d Dilaton–Gravity

Liuba Mazzanti (University of Santiago de Compostela)

based on:

U. Gursoy, E. Kiritsis, L. M., F. Nitti, [arXiv:1006.3261] U. Gursoy, E. Kiritsis, L. M., F. Nitti, [arXiv:0903.2859] U. Gursoy, E. Kiritsis, L. M., F. Nitti, [arXiv:0812.0792] U. Gursoy, E. Kiritsis, L. M., F. Nitti, [arXiv:0804.0899] see also:

U. Gursoy, E. Kiritsis, G. Michalogiorgakis, F. Nitti, [arXiv:0906.1890] U. Gursoy, E. Kiritsis, F. Nitti, [arXiv:0707.1349] U. Gursoy, E. Kiritsis, [arXiv:0707.1324]

Kolymbari, September 12, 2010

Motivations and Goals: Gluon Plasma and Holography

Motivations: phase diagram & hydrodynamics of the plasma

- 4D gauge theory: deconfinement phase transition
- lattice results for thermodynamic functions (equation of state, ...)
- heavy ion collision experiments for hydrodynamic and transport coefficients

Goals: 5d holography for the plasma

- setup: confinement & running coupling for 4D YM
- can it match the thermodynamics from lattice?
- if yes, can it give the hydrodynamic and transport coefficients ?

Introduction		
000		
Outline		

5d dilaton-gravity setup: zero T and finite T (TG & BH)

- Phase transition and thermodynamics
- Drag force from worldsheet background
- Diffusion constants and "jet quenching parameters"

Numerics

Introduction				
000	0000	000	000000	0000

Thermodynamics and Hydrodynamics

• Finite temperature: gauge/gravity correspondence Hawking-Page'83,Witten'98

Gravity solutions with periodic time: thermal gas and black hole

Gauge theory at finite temperature

• Langevin diffusion: momentum broadening

Casalderrey-Teany'06, Gubser'06, deBoer-Hubeny-Rangamany-Shigemori'08, Son-Teaney, Giecold-Iancu-Müller'09

Thermodynamics and Hydrodynamics

• Finite temperature: gauge/gravity correspondence Hawking-Page'83,Witten'98

Gravity solutions with periodic time: thermal gas and black hole

Gauge theory at finite temperature

• Langevin diffusion: momentum broadening

Casalderrey-Teany'06, Gubser'06, deBoer-Hubeny-Rangamany-Shigemori'08, Son-Teaney, Giecold-Iancu-Müller'09

The model		
0000		

5d Dilaton-Gravity Holography: Action Gursoy-Kiritsis'07

Field/operator correspondence $g^{\mu\nu} \Leftrightarrow T^{\mu\nu}$ $\phi \Leftrightarrow trF^2$

• Action in the Einstein frame

$$S_E = -\frac{M^3 N_c^2}{2} \int \mathrm{d}^5 x \sqrt{-g} \left[R - \frac{4}{3} (\partial \phi)^2 + V(\phi) \right]$$

• Dilaton potential determined phenomenologically: bottom-up

The model		
0000		

Black Hole Solution for 5d Dilaton-Gravity GURSOY-KIRITSIS-Mazzanti-Nitti'08

Finite T: asymptotic AdS **BH** + dilaton

$$ds^{2} = b(r)^{2} \left[\frac{dr^{2}}{f(r)} - f(r)dt^{2} + dx^{2} \right]$$
$$\lambda = \lambda(r), \quad V = V(\lambda)$$

Uniqueness: integration constants

- $\textcircled{0} \Lambda \Leftrightarrow {\rm strong \ coupling \ scale}$
- $\lambda_h \Leftrightarrow T$
- "good singularity"
- UV normalization $\Rightarrow f(0) = 1$
- unphysical

	The model			
000	0000	000	000000	0000

Zero T: Asymptotic Freedom and Confinement

UV geometry \Leftrightarrow YM β -function $(V = \frac{4}{3}W_{o,\phi}^2 - \frac{64}{27}W_o^2)$ $(r \rightarrow 0)$

$$\beta(\lambda) = -b_0\lambda^2 - b_1\lambda^3 + \dots = -\frac{9}{4}\lambda^2 \partial_\lambda \log W_o \text{ as } \lambda \to 0$$

•
$$b_0$$
 and b_1 fixed from YM
• $\lambda = N_c e^{\phi} \simeq -\frac{1}{b_0 \log r\Lambda}, \ b \simeq \frac{\ell}{r} \left(1 + \frac{4}{9} \frac{1}{\log r\Lambda}\right)$ and $V \simeq V_0 + V_1 \lambda$

 IR geometry \Leftrightarrow confinement via Wilson loop

$$(r \to \infty)$$

$$W_o \sim \lambda^{\frac{2}{3}} (\log \lambda)^{P/2}$$

• singularity at $\infty \Rightarrow P \ge 0$ (P = 1/2 for linear confinement)

magnetic screening and discrete gapped glueballs for all confining backgrounds

	The model			
000	0000	000	000000	0000

Zero T: Asymptotic Freedom and Confinement

UV geometry \Leftrightarrow YM β -function $(V = \frac{4}{3}W_{o,\phi}^2 - \frac{64}{27}W_o^2)$ $(r \rightarrow 0)$

$$\beta(\lambda) = -b_0\lambda^2 - b_1\lambda^3 + \ldots = -\frac{9}{4}\lambda^2 \partial_\lambda \log W_o \text{ as } \lambda \to 0$$

•
$$b_0$$
 and b_1 fixed from YM
• $\lambda = N_c e^{\phi} \simeq -\frac{1}{b_0 \log r\Lambda}, \ b \simeq \frac{\ell}{r} \left(1 + \frac{4}{9} \frac{1}{\log r\Lambda}\right)$ and $V \simeq V_0 + V_1 \lambda$

IR geometry ⇔ confinement via Wilson loop

$$(r
ightarrow\infty)$$

$$W_o \sim \lambda^{\frac{2}{3}} (\log \lambda)^{P/2}$$

• singularity at $\infty \Rightarrow P \geq 0$ (P = 1/2 for linear confinement)

magnetic screening and discrete gapped glueballs for all confining backgrounds

The model		
0000		

Black Hole: UV and IR Horizon

UV: same log expansion as the thermal-gas

$$\lambda(r) = \lambda_o(r) \left[1 + \frac{45}{8} \mathcal{G}(T) r^4 \log \Lambda r + \dots \right]$$
$$f(r) = 1 - \frac{1}{4} \mathcal{B}(T) r^4 + \dots$$

Holography

- $\mathcal{G}(T)$: vev of the $\Delta = 4$ operator \Rightarrow gluon condensate $\mathcal{G}(T) \sim \frac{T^4}{\log^2 T}$
- $\mathcal{B}(T)$: thermodynamic quantity $\mathcal{B}(T) = T\mathcal{S}$

IR: good singularity singled out

$$(r_h \to \infty)$$

 $(r_h \rightarrow 0)$

$$b(r) \sim b_o(r), \quad \lambda(r) \sim \lambda_o(r)$$

The model		
0000		

Black Hole: UV and IR Horizon

UV: same log expansion as the thermal-gas

$$\lambda(r) = \lambda_o(r) \left[1 + \frac{45}{8} \mathcal{G}(T) r^4 \log \Lambda r + \dots \right]$$
$$f(r) = 1 - \frac{1}{4} \mathcal{B}(T) r^4 + \dots$$

Holography

- $\mathcal{G}(T)$: vev of the $\Delta = 4$ operator \Rightarrow gluon condensate $\mathcal{G}(T) \sim \frac{T^4}{\log^2 T}$
- $\mathcal{B}(T)$: thermodynamic quantity $\mathcal{B}(T) = T\mathcal{S}$

IR: good singularity singled out

$$(r_h \to \infty)$$

 $(r_h \rightarrow 0)$

$$b(r) \sim b_o(r), \quad \lambda(r) \sim \lambda_o(r)$$

		Thermodynamics	
		000	
Phase Ir	ansition		

$$\underbrace{\frac{\mathcal{F}}{M_P^3 V_3} = \frac{S - S_o}{\beta M_P^3 V_3} = 15 \mathcal{G}(T) - \frac{\mathcal{B}(T)}{4}}_{\Downarrow}$$

First order phase transition ⇔ confining backgrounds

Liuba Mazzanti (USC)

	Thermodynamics ○●0	Hydrodynamics 000000	

Holographic Thermodynamics

Trace Anomaly vs. Gluon Condensate: the Trace Anomaly Equation

From dilaton fluctuation and field/operator correspondence

$$\frac{1}{4}\frac{\beta(\lambda)}{\lambda^2}\langle \mathrm{tr}F^2 \rangle = e - 3p = 60\mathcal{G}(T)M^3N_c^2$$

- Trace: $e 3p \propto \text{condensate} \Rightarrow \text{latent heat} \sim N_c^2$
- \bullet Pressure, Energy, Entropy: $p,e,s \sim N_c^2$ for $T > T_c \Rightarrow {\rm deconfinement}$
- Sound speed: $c_s^2 \rightarrow 1/3$ at high-T, small at T_c

	Thermodynamics	
	000	

Thermodynamic Result Boyd-et al.'05 (SU(3)), Lucini-Teper-Wenger'05 (large-N_c),

11 / 25

	Hydrodynamics	
	00000	

Holographic Langevin Diffusion

Heavy quark dynamics:

$$\frac{d\vec{p}}{dt} + \eta_D \vec{p} = \vec{\xi}, \quad \langle \xi^i \xi^j \rangle = \kappa^{ij} \delta(t - t')$$

$$\uparrow \qquad \uparrow$$
viscous force diffusion constants

$$\Leftrightarrow \text{ momentum broadening}$$

$$\eta_D = -\frac{1}{\gamma M\omega} \mathrm{Im} G_R(\omega)|_{\omega=0}, \quad \kappa = G_{sym}(\omega)|_{\omega=0}$$

• G_{sym} and G_R are correlators of $\mathcal{F}(t)$, the instantaneous force on the quark

Field/operator correspondence

 $\mathcal{F} \Leftrightarrow X^M$

• correlators are computed holographically from the string fluctuations δX^M

	Hydrodynamics	
	00000	

Holographic Langevin Diffusion

Heavy quark dynamics:

$$\frac{d\vec{p}}{dt} + \eta_D \vec{p} = \vec{\xi}, \quad \langle \xi^i \xi^j \rangle = \kappa^{ij} \delta(t - t')$$

$$\uparrow \qquad \uparrow$$
viscous force diffusion constants
$$\Leftrightarrow \text{ momentum broadening}$$

$$\eta_D = -\frac{1}{\gamma M\omega} \mathrm{Im} G_R(\omega)|_{\omega=0}, \quad \kappa = G_{sym}(\omega)|_{\omega=0}$$

 $\bullet~G_{sym}$ and G_R are correlators of $\mathcal{F}(t),$ the instantaneous force on the quark

Field/operator correspondence

$$\mathcal{F} \Leftrightarrow X^{\Lambda}$$

• correlators are computed holographically from the string fluctuations δX^M

Kolymbari, September 12, 2010

			Hydrodynamics	
			00000	
T	• • • • • • •			
I railing 5	tring Gursoy-Kiritsis-M	lazzanti-Nitti'10		

$$\begin{aligned} X^1 &= vt + x(r), \quad X^2 = X^3 = 0\\ S_{NG} &= -\frac{1}{2\pi\ell_s^2} \int \mathrm{d}r \mathrm{d}t \; b^2 \sqrt{1 - \frac{v^2}{f} + f\dot{x}^2} \end{aligned}$$

Worldsheet Horizon

The induced metric has a horizon at r_s with temperature:

$$4\pi T_s = \sqrt{f\dot{f}} \sqrt{4\frac{\dot{b}}{b} + \frac{\dot{f}}{f}} \bigg|_{r_s}$$

 $f(r_s) = v^2$

	Hydrodynamics	
	00000	

Worldsheet Background: the Drag Force

 $\bullet\,$ Drag force \Rightarrow classical momentum lost by the moving string to the horizon

$$\eta_D = -\frac{\pi_x}{\gamma v M} = \frac{1}{\gamma M} \frac{b^2(r_s)}{2\pi \ell_s^2}$$

 $\bullet\,$ Diffusion time \Rightarrow attenuation time for the momentum

$$\tau_D \equiv \frac{1}{\eta_D} = \gamma M \frac{2\pi \ell_s^2}{b^2(r_s)}$$

Comparison to AdS_5 (λ_{AdS} fixed) • $T_{s,AdS} = T/\sqrt{\gamma}$ • $\tau_{D,AdS} = \frac{2M}{\pi\sqrt{\lambda_{AdS}}T^2}$ momentum-independent

		Hydrodynamics	
\A/aylalahaa	. н . ГІ., ан., ан.; а		

Worldsheet Fluctuations

 X^1

Worldsheet onshell action to second order

$$= vt + x(r) + \delta X^{1}, \quad X^{2} = \delta X^{2}, \quad X^{3} = \delta X^{3}$$

$$S_{NG}^{(2)} = -\frac{1}{2\pi\ell_{s}^{2}} \int \mathrm{d}r \mathrm{d}t \; \frac{G^{\alpha\beta}}{2} \partial_{\alpha} \delta X \; \partial_{\beta} \delta X$$

$$G_{\perp}^{\alpha\beta} = Z^{2} G_{\parallel}^{\alpha\beta} = \frac{b^{2}}{Z^{3}} \left(\begin{array}{c} -\frac{Z^{2}f + v^{2}}{f^{2}} & v\dot{x} \\ v\dot{x} & f - v^{2} \end{array} \right), \; Z \equiv b^{2} \frac{\sqrt{f - v^{2}}}{\sqrt{b^{4}f - b_{s}^{4}v^{2}}}$$

Leading Asymptotics from eom

• boundary: $\delta X^{I} \sim c^{I}_{sour} + c^{I}_{vev} r^{3}$

• horizon:

$$\delta X^{I} \sim c_{in}^{I} \left(r_{s} - r \right)^{-\frac{\mathrm{i}\omega}{4\pi T_{s}}} + c_{out}^{I} \left(r_{s} - r \right)^{\frac{\mathrm{i}\omega}{4\pi T_{s}}}$$

• Retarded wave functions Ψ_R : $c_{out} = 0$ and $c_{sour} = 1$

 $I = \bot, \parallel$

Introduction 000	The model 0000	Thermodynamics 000	Hydrodynamics ○○○○●○	Numerics 0000
Diffusio	n Constants ar	nd Jet Quen	ching Gursoy-Kiritsis-Mazzanti-Nitti'10	
G_{2}	$_{R}=-rac{1}{2\pi\ell_{s}}G^{rlpha}\Psi_{R}^{*}\partial_{c}$	$_{\alpha}\Psi_{R}\big _{\text{bound.}}, G_{s}$	$_{sym} = - \coth\left(\frac{\omega}{2T_s}\right) \operatorname{Im} G_F$	2
		\Downarrow		
	$\kappa = \lim_{\omega \to 0} $	$\lim_{s \to 0} G_{sym} = \lim_{\omega \to 0} G_{sym}$	$\coth\left(\frac{\omega}{2T_s}\right)J^r$	
• . • ģ	J^r is a conserved curre $\hat{q} \equiv \langle \Delta p^2 angle /L$ at strong	nt (number currer coupling ↓	nt)	
	$\kappa_{\perp} = \frac{1}{2}v\hat{q}_{\perp} = \frac{1}{2}v\hat{q}_{\perp}$	$\frac{1}{\pi \ell_s^2} b_s^2 T_s, \qquad \kappa_{\parallel}$	$= v \hat{q}_{\parallel} = rac{16\pi}{\ell_s^2} rac{b_s^2}{\dot{f}_s^2} T_s^3$	

Generalized Einstein relation to diffusion time:

$$\tau_D \kappa_\perp = 2\gamma M T_s$$

Introduction 000	The model 0000	Thermodynamics 000	Hydrodynamics ○○○○●○	Numerics 0000
Diffusion	Constants ar	nd Jet Quenc	hing Gursoy-Kiritsis-Mazzanti-Nitti'1	10
G_R	$= -\frac{1}{2\pi\ell_s} G^{r\alpha} \Psi_R^* \partial_c$	$_{\alpha}\Psi_{R}\Big _{\text{bound.}}, G_{sy}$	$d_{m} = - \coth\left(\frac{\omega}{2T_s}\right) \operatorname{Im} G$	R
		\Downarrow		
	$\kappa = \lim_{\omega \to \infty} \frac{1}{\omega}$	$\lim_{\omega \to 0} G_{sym} = \lim_{\omega \to 0} \cos(\theta)$	$\operatorname{oth}\left(\frac{\omega}{2T_s}\right)J^r$	
• J^r • \hat{q} :	is a conserved curre $\equiv \langle \Delta p^2 angle /L$ at strong	nt (number current coupling)	
		\Downarrow		
	$\kappa_{\perp} = rac{1}{2}v\hat{q}_{\perp} = rac{1}{2}$	$\frac{1}{\pi \ell_s^2} b_s^2 T_s, \qquad \kappa_{\parallel} =$	$= v \hat{q}_{\parallel} = rac{16\pi}{\ell_s^2} rac{b_s^2}{\dot{f}_s^2} T_s^3$	

Generalized Einstein relation to diffusion time:

$$\tau_D \kappa_\perp = 2\gamma M T_s$$

	Hydrodynamics	
	000000	

WKB Approximation for Large Frequencies

• WKB for
$$\omega r_s \gg 1$$
: $\Psi_R \sim C_1 \cos \left[\int \frac{\omega Z}{f - v^2} + \theta_1\right] + C_2 \sin \left[\int \frac{\omega Z}{f - v^2} + \theta_2\right]$

Coefficients determined by boundary and horizon behavior

Spectral Densities

 \bullet Infinite mass: cubic in ω

$$\rho_{\perp} \simeq \gamma^{-2} \rho_{\parallel} \simeq \frac{\ell^2 \gamma^2}{\pi^2 \ell_s^2} \omega^3 \lambda_{tp}^{\frac{4}{3}}$$

• Finite mass, high velocities ($\gamma \omega r_Q \gg 1$): linear in ω

$$\boldsymbol{\rho}_{\perp} = \gamma^{-2} \boldsymbol{\rho}_{\parallel} \simeq \frac{\ell^2 \gamma^2}{\pi^2 \ell_s^2} \omega^3 r_Q^2 b_Q^2 \lambda_Q^{\frac{4}{3}} \left[1 + (\gamma \omega r_Q)^2 \right]^{-1}$$

 $M \sim 1/r_Q$, $\lambda_{tp} = \lambda$ at turning point

 $\rho \equiv -\frac{1}{\pi} \text{Im} G_R$

		Hydrodynamics 000000	Numerics ●000
C	_	 A	

Spectral Densities — Infinitely Massive Quarks

Symmetric Correlator

				Numerics
000	0000	000	000000	0000

Spectral Densities — Finite Massive Quarks

Retarded and Symmetric Correlator — Charm

Introduction	The model	Thermodynamics	Hydrodynamics	Numerics
000	0000	000	000000	0000

Diffusion Constants

Ratio to ${\cal A}dS$

				Numerics
000	0000	000	000000	0000

Jet Quenching Parameter

Bottom and Charm Quarks: \hat{q} vs. momentum

			Hydrodynamics 000000	
Summary				
5D	$dilaton-gravity \Leftrightarrow d$	4D holographic larg	e- N_c gauge theory	

Confinement with discrete spectrum in agreement with lattice at low-T

∜

Phase transition first order Hawking–Page confinement/deconfinement
 only for confining backgrounds

- Thermodynamics in good agreement with lattice
- Output Description of the second state of t

Ansatz for the Potential Gursoy-Kiritsis-Mazzanti-Nitti'09

$$V(\lambda) = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} \left[\log \left(1 + V_2 \lambda^{4/3} + V_3 \lambda^2 \right) \right]^{1/2} \right\}$$

Monotonic

Asymptotic freedom and confinement

Linear Regge trajectories

• YM for V_0, V_2

•
$$V_1 = 14$$
 p/T^4 at $T = 2T_c$
• $V_3 = 170$ e/T^4 at $T = T_c$ (latent heat

)

Thermodynamic Results

Summary of Parameters

	HQCD	$N_c = 3$	$N_c \to \infty$	Parameter
$m_{0^{++}}/\sqrt{\sigma}$	3.37	3.56 *	3.37 ••	$\ell_s/\ell = 0.15$
$\left[\frac{p}{(N_c^2 T^4)}\right]_{T \to \infty}$	$\pi^{2}/45$	$\pi^{2}/45$	$\pi^{2}/45$	$M\ell = [45(2\pi)^2]^{-1/3}$
$\left[\frac{p}{(N_c^2 T^4)}\right]_{T=2T_c}$	1.2	1.2	-	V1 = 14
$\frac{L_h}{(N_c^2 T_c^4)}$	0.31	0.28 •	0.31	V3 = 170

Table: *=Chen-et al.'05,**=Lucini-Teper'01,•=Boyd-et al.'96,••=Lucini-Teper-Wenger'05

Thermodynamic Results

Summary of Results

	HQCD	$N_c = 3$	$N_c \to \infty$
$m_{0^{*++}}/m_{0^{++}}$ $m_{2^{*++}}/m_{2^{++}}$	1.61 1.36	1.56(11) • 1.40(4) •	1.90(17) •• 1.46(11) ••
$T_{c}/m_{0^{++}}$	0.167	-	0.177(7) ••

Table: *=Chen-et al.'05,**=Lucini-Teper'01,•=Boyd-et al.'96,••=Lucini-Teper-Wenger'05

