A Holographic Model of the Quantum Hall Effect

Matt Lippert (Crete)

With O. Bergman (Technion), G. Lifschytz (Haifa), N. Jokela (Technion & Haifa)

Holographic fermions

Many systems have strongly-coupled fermions

- QCD
- Condensed matter systems
 - High- $T_{\rm c}$ superconductors
 - Fractional quantum Hall effect (FQHE)

0 ...

Interesting, but difficult

Holographic Approach:

Dp-Dq with #ND=6

- charged fermions in (p-1) dim
- Dq probe in Dp background
- SUSY **stability**?

Example:

Sakai Sugimoto model: D4-D8-D8

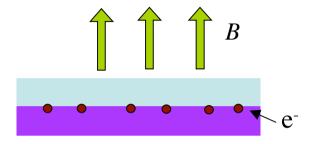
Rey Kraus et al Myers et al Hong & Yee

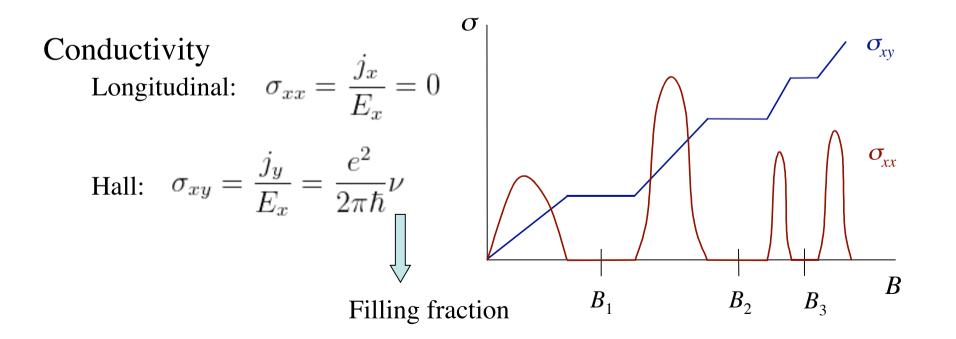
. . .

Quantum Hall Effect (QHE)

Experimental Setup:

e⁻ in 2+1 d high magnetic field Blow temperature T





Filling Fraction

$$\nu \equiv \frac{2\pi\hbar}{e} \frac{D}{B} \sim \frac{\text{\# electrons}}{\text{\# flux quanta}}$$

QHE states at $v = v_*$

 $v_* \in \mathbb{Z} \implies$ Integer QHE

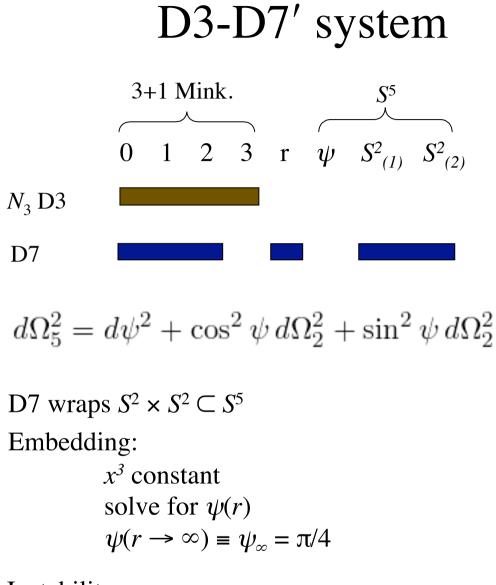
weakly-coupled electrons in filled Landau levels

 $v_* \not\in \mathbb{Z} \implies$ Fractional QHE

strongly-coupled system, Laughlin wave function

Open questions:

- allowed v_* 's
- transitions
- microscopic description



Instability

lowest mode for ψ : $m^2 = -8 < -9/4$ (BF bound in AdS_4)

Stabilization

Wrap *n* units of magnetic flux on $S^{2}_{(1)}$

$$F = \frac{L^2}{4\pi\alpha'} f \, d\Omega_2^{(1)}$$

where f is quantized: $f = \frac{2\pi\alpha'}{L^2} n$ with $n \in \mathbb{Z}$

Embedding: UV ansatz

 $\psi \to \psi_\infty + A r^{-\Delta}$

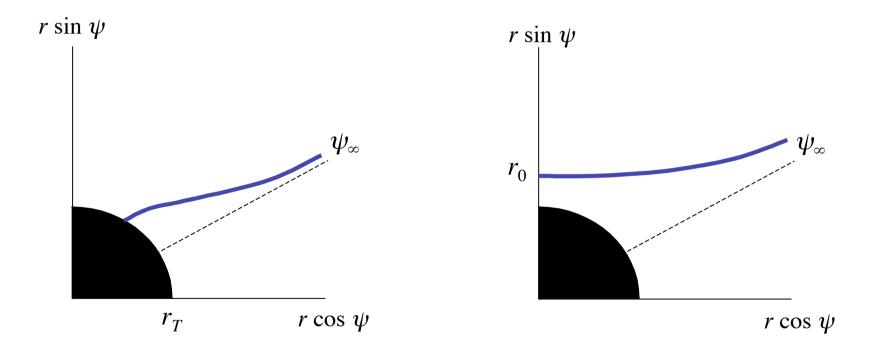
Plug in to ψ eom Stability (real Δ) requires:

$$f^{2} = 4\sin^{2}\psi_{\infty} - 8\sin^{4}\psi_{\infty}$$
$$0 < \psi_{\infty} < \arcsin\left(\frac{5}{\sqrt{73}}\right) \approx \frac{\pi}{5} \quad \text{and} \quad 0 < f^{2} < \frac{1}{2}$$

Embeddings

Black Hole (BH)

Minkowski (MN)



D7 enters horizon

D7 ends where S^2 shrinks

Add charges and magnetic field

Charge density

$$2\pi\alpha' F_{r0} = a_0'(r)$$

Magnetic field

$$2\pi\alpha' F_{xy} = B$$

Chern-Simons

$$\begin{split} S_{CS} &\sim \int C_4 \wedge F \wedge F \\ &\sim B \int dr \, c(r) a_0'(r) \quad \text{where} \ c(r) \sim \int_{S^2 \times S^2} C_4(r) \\ &\approx \psi(r) - \psi_\infty \end{split}$$

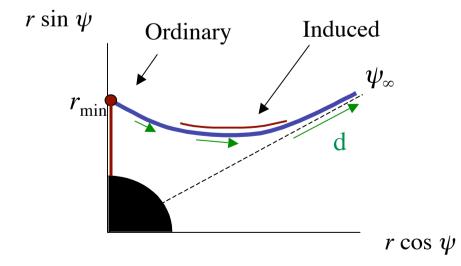
 \blacktriangleright C_4 flux and *B* induce charge

Where's the charge?

Electric displacement \iff radial charge distribution

$$d(r) \equiv \frac{\delta S_{D7}}{\delta a'_0} = d_\infty - 2Bc(r)$$

total charge: $D = d_{\infty}$ induced charge density: $2Bc' \approx 2B\psi'$ ordinary charge (F1 endpoints) : $D - 2Bc(r_{\min})$

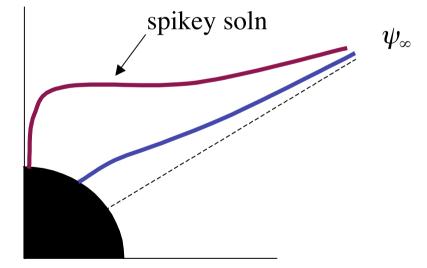


BH Embeddings

Metallic state

- gapless charged excitations
- longitudinal current (via Karch-O'Bannon)

Solutions become spikey as
$$\nu \equiv \frac{1}{\pi} \frac{D}{B} \rightarrow 1 - \frac{2\psi_{\infty}}{\pi}$$

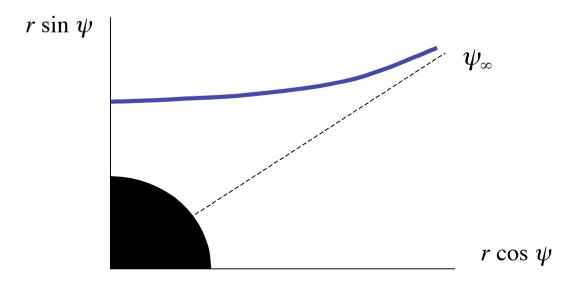


MN Embeddings

QHE state

۲

- Filling fraction $\nu = \nu_* = 2c(r_0) \approx 1 - \frac{2\psi_{\infty}}{\pi}$ ν_* fixed by $f \implies$ quantized
- no sources at tip \longrightarrow D and B locked
- gap for charged excitations $m_g \sim r_0 r_T$
- transition from BH crossover



MN Conductivity

Modified Karch-O'Bannon

- 1. Turn on electric field and radial fields dual to j_x and j_y
- 2. But require regularity of gauge field at tip (no pseudohorizon)
- 3. Conductivity

$$\sigma_{xx} = 0$$

$$\sigma_{xy} = v_*/2\pi$$

Summary

Holographic model:

D7 probe with flux in D3 background describes

- charged fermions in 2+1
- strongly-coupled gauge theory in 3+1
- nonzero T, D, B

MN embeddings \iff QHE state with quantized v_*

To Do List

Transitions

 v_* fixed by fscan in B with fixed $D \implies$ only one QHE state to vary $v_* \implies$ Legendre transform to magnetization dual to f

Fluctuations Stability of QHE state Spectrum

Metallic state Thermodynamics Phase structure

Other 2+1 dim, #ND = 6 models e.g. D2-D8