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“Generalized Kahler manifolds and off-shell supersymmetry”.
Commun.Math.Phys.269:833-849,2007

JHEP 0910, 062 (2009) , [arXiv:0811.3615 [hep-th]] .

JHEP 1008, 060, (2010) . [ arXiv:1005.5658 [hep-th]]

with

Martin Rocek,
Rikard von Unge,
Maxim Zabzine.
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Sigma models

T >T
S= [ do/Gy(0)+ do
pu
V2¢' = %9  + 0¢/T /0K = 0

S=| ae {nwaﬂx"e,-,(X)ayxf T }
g
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SUSY sigma models

Ex. (d =2,N = (2,2) chiral fields)

{Da, Dg} = 2idag
¢(2) = ¢(2,0) :

X(2)=¢|, Va(2)=Dad|, F(2)=D?|

Y

S— f dzdzD?D? K(¢, $)

_ szdz(ax Gy (X, X)X + ..)
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where
GX)—((X,)_() = ox0xK(X, )_()

<= 7T carries Kahler Geometry

Susy o models <= Geometry of 7

= |6 4 2| Geometry
=1 2 4 | Hyperkahler
= 1 2 | Kahler

= 1 | Riemannian
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e Supersymmetric sigma models provide a powerful tool to
probe complex geometry.

e The more supersymmetries, the more specialized the
geometry

 Additional supersymmetries, when examined at the (2,2)
level, lead to interesting new structures on the target space.
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The (1,1)-D-algebra:

DE = idy

S = Jd2xD+ID> (ID)+goi(G,]-+B;j)ID>,<pj).

The (1,1) analysis by Gates, Hull and Rocek gives:

Susy |(0,0) (1,1) | (2,2) (2,2) (4.4) (4.4)
Bgd G,B G G,B G G, B
Geom Riem. Kahler | biherm. | hyperk. | bihyperc.

Ulf Lindstrém Superspace is smarter



Ansatz for the extra supersymmetries:

Invariance of the action and closure of the algebra requires the
geometry to be bi-hermitean: Data (M, G, J+, H)

Sy =
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An alternative description

Data: Bihermitean (M, G, J+) with integrability conditions
d(C+)w(+) + d(c_)w_ = O
dd(ci)w(i) =0.

where

Wiy = Gy
d®:=i(@-d), (1)

and

H=H&D + HI2 = af o) = —df ywey -
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(2,2) superfields

The (2,2)-D-algebra:
{Dy,D.} = 2004
Chiral fields ¢:
Dip=0=D.$=0
Twisted chiral fields :
D.x=D xy=0=D,y=D 1=0
Left/Right semi-chiral fields X, /!

D+X[_ - 0 = DJ’_XL - 0
DXg=0=DXgz=0 2)

These are all the fields needed.
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Relation to GKG

S = J d?xD?D?K (¢, 6, x, X, X1/r. X1/R)

R szx (040! (Gy + By +...)

(1), GH=dB),

Jo==1  NUz) =0 [hud)]#0,
J(ti)GJ(i) = G, H= d(c+)w(+) = —C/(ci)W(_)

A complete description of GKG.*

* Locally and away from irregular points.
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A Gerbe outline

| Line Bundle |

!

| Line Bundle with connection |

!

| Holomorphic Line Bundle (with connection) |
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!

\ Gerbe with connection \

!

| Holomorphic Gerbe (with connection) |

!

| Biholomorphic Gerbe (with connection) |
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Maps defined on each threefold intersection

Gapy : Us nUs n Uy — S'
satisfying
9apy = Gbva = Grap = 95_01{7 = 9;715 = Q»?éa

as well as a cocycle condition on U, n Us n U, n Us

906v98069~35F50~y = 1
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Gerbe
with a connection

e H¥3(M,z)
H=dB, ,
B, — By = dA.s,
(0A)agy = Aag + Agy + Ay = dAags
(ON)apys 1= Noys + Nsya + Naps + Ngary = Caprs »

where

B, e Q%(U,),

Anp € Q1(Ua nUs) ,

Nopy € CP(UsnUgn Uy) ,

CaBys €2T L .
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Let 9opy : Uan Usn U, — S be given by
Gapy = eiAaﬁW )
This defines a gerbe where A3, are angles,

Mgy € 27R/Z. .
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Holomorphic Gerbes

Holomorphic functions
Gugy 1 UsnUgn U, —» C*
Hermitean structure:

Gopy Gagy = Paphs e
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Additional structure

Locally the (2, 1)-part of H can be written as

HZY = jooA("0) = H = dd®(Re A{!"?)) .

B = joa(10) — jox(O1)

On Ua N Uﬁ .
)\(1,0) . )\(1 0) 5§a + ¢ (1 0)

where $(1:0) is a holomorphic (1, 0)-form.
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Gerbes and the

Generalized K&hler gauge transformation:

K, — K3

= F (0, X0) + Fl5(0, %, X0) + Flp(6, %, Xr) + Fop(é, X, Xa) -
On U, n Uz n Uy:

Re (Fiy+ Fiy + Fiu+ Foy+ Fi 4 Fro) =0

Foia(@sx: X0) + Fi (6, x, X0) + Fo (¢, x, X0)
= i (Capy(®) — bapy (X)) »

Fo5(0. X XR) + F5 (0, X, Xr) + F 0(¢, X, XR)
= —i (Capy(®) + bapy (V) -
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¢ and b are (twisted) biholomorphic functions f : (d — id§)f = 0;

Capy = —Cpay = —Cayp = —Cypa »
bapy = —Bpay = —baryp = —bypa -
On UaﬁU;;ﬁUWﬂU(;Z

(0€)apys — (0b)apys = 0,
(5C)aﬁ'y§ + (55)aﬁ75 =0

Cﬁ'yé + C&ya + Caps + Cﬂa'y = ﬁl.da,@yé )
bgy5 + bsya + bags + Bpary = gdapys -

= da/@fy(g € 2.
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N ( K s 0K gga 0K dxd)

oXg 962 o
(K . 0K . 0K | g
A = I(&deXL + 6¢>ad¢ + 6Xa'dx >+c.c.
;rﬁ = i(F"=F )ap
o) = i(FFox® — F3d¢)as
£ = HFT=F)ag
600 = i(Fydp? — Fydx®)as

/\aﬁy = i(aaﬁ'y((g) - Caﬁ7(¢) + Baﬂ'y(f() - baﬂ'y(X)) .
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Biholomorphic Gerbe

Biholomorphic:

Gapy(9) = €% Fup(x) = e,
Gagy s Fapy  UsnUgn U, ,—» C*,

Antisymmetric under permutations of the open sets and satisfy
the cocycle condition on the four-fold intersection.

Ulf Lindstrém Superspace is smarter



In addition,

1 C — h— h—
Gy Fogy = hl gy s GapyFasy = Poghs hw

where hl; = exp(T4iF7;) special J.-holomorphic function.
Compare to Hermiticity for a holomorphic line-bundle:
Gaﬁéag = gfegKs ,

where we may interpret K as the Kahler potential.

e We have not been able to retrieve the generalized Kahler
potential from the hermiticity conditions of a biholomorphic
gerbe in all cases.
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Generalized Geometry and Spinors

e Want to relate the Type Il supergravity solutions for metric,
dilaton and NS-flux to the world-sheet description in terms of
N = (2,2) sigma models.

Spinorspon T @ T*:
A section X + ¢ of T @ T* acts on a form p:

(X+& -p=wxp+&np
Invariant bilinear form (Mukai pairing):

it 2 d-2j | 201  d-2j1
(p1,p2) = D (=1[p7 A p3 7+ 07" A py P77,
]

A spinor p is pure if it annihilates a maximal isotropic subspace
of T T*.
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A generalized Kéhler structure:

Two commuting generalized complex structures 7y and 7> such
that the quadratic form (77 Jo(X + &), (X + &)) is positive
definite.

A generalized Calabi-Yau metric structure:

A pair of closed pure spinors py and p» such that the
corresponding generalized complex structures J; and J» give
rise to a generalized Kahler structure and (p1, p1) = a(p2, p2)
for some non-zero constant «.
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A supergravity solution

The Gualtieri map gives us g,.., H,.,, and thus the relation to
the sigma model. The dilaton ® comes from normalization of
the spinors

(p1,ﬁ1) = Oé(pg,ﬁg) = 6_2¢Volg = 9_24)\/5 dX1 AL A dXD .

The data (g, Hup, ®) is a Type Il supersymmetric
supergravity solution. It automatically solves the equation

R, +2V,0,0 =0,
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Construction from the sigma model

Ansatz:

p12 = Nia A eftetiSre

)

where

Ny = e@dep' A... Adep%,

N, = e9%dx" A... A dxg, ;

Ry = —d(KLdXp),

R = —d(KrdXg),

S1 = d(Krddx + K JdX| — KgrJdXR) ,
S, = —d(Kcddo + K JAdX; + KrJdXR) ,

These are pure spinors with the correct properties.



The Generalized Monge-Ampére equation

(p1,p1) = alp2, p2) =

rt

—Kg —Kr —Kg

o Kr Ki Ke
= aedWedWdet | K; K; K

) 3 -Ki —Kr —Kj
(—1)%%f(9) /(@) det ~Kyz —Kir —Kg

ch K Vi

det KLR i

» —K; K, —Kjg

—f(#) a—f(®) i Ir It

e — (—1)%%® € T get| K5 —K —Ks
_Kﬁ —Kir _Kﬁ
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