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Introduction

• The AdS/CFT correspondence provides a tool for
studying large Nc gauge theories at strong coupling.
Has been applied to several problems of interest from
nuclear physics to condensed matter (chiral symme-
try breaking, viscosity to entropy ratio, marginal fermi
liquid description, superconductors etc.)

• Interesting to study higher derivative gravity theo-
ries in the context of the AdS/CFT correspondence.
They provide a holographic example where c 6= a.
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Introduction

Gravitational theories with higher derivative terms in
general

• Have ghosts when expanded around flat space.

• Their equations of motion contain more than two
derivatives of the metric. Hard to solve exactly.

Additional degrees of freedom.

In holography, this implies the existence of extra fields
in the boundary CFT.

[Skenderis, Taylor and van Rees].
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Introduction

There exists a special class of gravitational theories with
higher derivative terms, Lovelock gravity.

S =
∫
dd+1x

√
−g

[d2]∑
p=0

(−)p
(p− 2d)!

(p− 2)!
λpLp

with [d
2
] the integral part of d

2
, λp are the Lovelock pa-

rameters and the p-th order Lovelock term Lp is

Lp =
1

2p
δµ1ν1···µpνp
ρ1σ1···ρpσpR

ρ1σ1
µ1ν1
· · ·Rρpσp

µpνp

Lp is the Euler density term in 2p–dimensions.
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Introduction

We choose λ0 = 1 and λ1 = −1 such that

L0 =
d(d− 1)

L2
L1 = R .

Examples:

• 2nd order Lovelock term ⇔ Gauss-Bonnet

L2 = R2
µνρσ − 4R2

µν +R2

• 3rd order Lovelock term

L3 = 2RρσκλRκλµνR
µν

ρσ + 8Rρσ
κµR

κλ
σνR

µν
ρλ+

+ 24RρσκλRκλσµR
µ
ρ + 3RR2

ρσκλ + 24RρκσλRσρRλκ+
+ 16RρσRσκR

κ
ρ − 12RR2

ρσ +R3
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Introduction

Special Properties of the Lovelock action:

• Equations of motion contain only up to second order
derivatives of the metric ⇒ No additional boundary
data.

• No ghosts when expanded around Minkowski flat back-
ground.

• Palatini and Metric formulations equivalent

[Exirifard, Sheikh–Jabbari].
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Introduction

Study Lovelock theories of gravity in the context of the
AdS/CFT correspondence. Are there any signs that
we can trust holography in this case? If so, what new
features does the boundary CFT acquire, given the ad-
ditional parameters of the theory λp? Can they teach
us something new?

Objective of this talk:

Focus on holographic entanglement entropy. New fea-
tures and tests.

Work in progress with Jan de Boer and Andrei Parnachev.
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Outline

• Entanglement Entropy: A review

• Holographic Description of Entanglement Entropy

• EE in four dimensional CFTs : Solodukhin’s Result

• Fursaev’s proposal and Generalizations

• Holographic calculations of EE in Gauss-Bonnet

gravity

• Summary, Conclusions and Open Questions
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Entanglement Entropy: Review

• Consider a quantum mechanical system at zero tem-
perature in a pure state |Ψ〉. The density matrix is
ρ0 = |Ψ〉〈Ψ| and the von Neumman entropy vanishes

S = −trρ0 ln ρ0 = 0 .

• “Divide” the system into two subsystems A, B with
Hilbert spaces HA, HB. The reduced density matrix
ρA = trBρ0 is accessible only to A. The entanglement
entropy for the subsystem A is the von Neumman
entropy of the reduced density matrix ρA

SA = −trAρA ln ρA
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Entanglement Entropy: Review

The entanglement entropy, EE, measures how ”quan-
tum” a system is.

Example:

Consider two systems A,B with Hilbert spaces consisting
of two states {|1〉, |2〉}. The total Hilbert space is the
product of the Hilbert spaces HA, HB.

Product State:
|1A1B〉 ⇒ SA = 0

Pure (non product) State:

1√
2

(|1A2B〉 − |2A1B〉)⇒ SA = ln 2
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Entanglement Entropy: Review

EE satisfies a number of different properties:

• For the subsystem V and its complement V c entan-
glement entropy is equal.

S(V ) = S(V c)

• For any two subsystems A, B entanglement entropy
satisfies the strong subadditivity property

S(A) + S(B) ≥ S(A ∪B) + S(A ∩B)
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Entanglement Entropy: Review

EE in a continuous system is UV divergent. The “Area
Law” of EE refers to the form of the leading divergence

S(V ) ∼
Area(∂V )

εd−2
+ · · ·

Note: The “Area Law” is violated for systems with a
Fermi surface [Wolf, Gioev, Klich, ...].

For a conformal field theory, CFT, in d-dimensions

S(V ) =
gd−2[∂V ]

εd−2
+ · · ·+

g1[∂V ]

ε
+ g0[∂V ] ln ε+ s(V ) .

If V has a single characteristic length scale, R, gi[∂V ] is
a homogeneous function of degree i of R.
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Entanglement Entropy: Review

Functions gi[∂V ] with i 6= 0 are non-physical, cutoff de-
pendent.

• The coefficient of the logarithmically divergent term
in the EE, g0[∂V ], is physical and universal.

In 2-dimensional CFTs the leading divergent term is
logarithmic. Its coefficient is proportional to the central
charge c of the CFT.

e.g: The EE of a line segment of length l

S(l) =
c

3
ln
l

ε
[Casini, Huerta]: An alternative proof of the c-theorem
in combining this result with the strong subadditivity
property of EE.
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Entanglement Entropy: Review

• How to compute EE in quantum field theory?

The replica trick:

S(V ) = lim
n→1

trV ρnV − 1

1− n
= −

∂

∂n
ln trV ρ

n
V |n=1

In the path integral formalism trV ρnV = Zn
Zn1

and one com-

putes the partition function Zn by gluing together n

copies of IRd along the boundary (∂V ).
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Entanglement Entropy: Review

(a) Path integral representation of the reduced density matrix,

(b) The n-sheeted surface, with n = 3 for simplicity.
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Holographic Description of EE

[Ryu-Takayanagi]

The EE in a CFT on IRd of a subspace V with arbitrary
(d− 2)-dimensional boundary (∂V ) ∈ IRd−1 is given by

S(V ) =
1

4G(d+1)
N

∫
Σ

√
σ

Here Σ is the static d-dimensional minimal surface within
AdSd+2 which asymptotes to (∂V ).

The proposal has been generalized to non-conformal
cases and the near horizon limit of Dp–branes. A co-
variant formulation has been proposed as well.

[Ryu, Takayanagi, Klebanov, Kutasov, Murugan, Hubeny,
Rangamani]
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Holographic Description of EE

Ryu-Takayanagi formula passed several tests:

• It is trivially equal for V and its complement V c (when
evaluated at zero temperature).

• At zero temperature, in the limit of very large V the
holographic EE vanishes. At finite temperature it
asymptotes to the thermal entropy.

• Satisfies the strong subadditivity property.

[Headrick, Takayanagi]

• Agreement with field theoretic results in 2-dimensional
CFTs [Calabrese, Cardy].
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Solodukhin’s result for EE in 4d-CFTs.

The coefficient of the logarithmic term in the EE of a
subspace V with boundary ∂V of extrinsic curvature kiµν

g0[∂V ] =
c

720π
g0c[∂V ]−

a

720π
g0a[∂V ]

c, a are the CFT central charges defined through the
Weyl anomaly on a curved manifold

〈T µµ 〉 =
1

90
×

1

64π2

(
cI2 − aL(2)

)
I2 is the square of the Weyl tensor and L(2) is the Euler
density in four dimensions, i.e., the Gauss–Bonnet term.
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Solodukhin’s result for EE in 4d-CFTs.

g0c, g0a depend on the details of the boundary ∂V

g0c[∂V ] =
∫
∂V
Rµνστ(n

µ
i n

σ
i )(nνjn

τ
j)−Rµνn

µ
i n

ν
i +

1

3
R +

+
∫
∂V

[
1

2
kiki − (kiµν)

2
]

g0a[∂V ] =
∫
∂V
R(∂V )

• ni with i = 1,2 are vectors normal to the surface (∂V )

• kiµν is the extrinsic curvature associated to ni.
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Solodukhin’s result for EE in 4d-CFTs.

Corollary for the EE of any four dimensional CFT:

• For V a ball B of radius of R

g0(B) =
a

90

• For V a cylinder C of radius R and “infinite” length l

g0(C) =
c

720

l

R
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Solodukhin’s result for EE in 4d-CFTs.

Solodukhin’s result for the coefficient of the logarithmi-
cally divergent term in the entanglement entropy of a
ball was confirmed for the case of a free massless scalar
field both numerically and analytically.

[Lohmayer, Neuberger, Schwimmer, Theisen / Casini,
Huerta]

Note: This result provides a new, distinct characteriza-
tion of the central charges (c, a) of the CFT.

Connection to Zamolodchikov’s theorem? Generaliza-
tion to arbitrary dimensions?
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Fursaev’s proposal and Generalizations

In all CFTs dual to Einstein-Hilbert gravity (with a cos-
mological constant): a = c.

• Is there a way to distinguish between the two central
charges in holography?

Gauss-Bonnet gravity, is a higher derivative gravity with
this property.

SGB =
1

16πG(5)
N

∫
d5x
√
−g

(
R+

12

L2
+
λGBL2

2
L(2)

)
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Fursaev’s proposal and Generalizations

Gauss-Bonnet gravity admits two AdS solutions. One
solution is unstable against small perturbations.

Consider the stable solution with radius:

L2
AdS =

1 +
√

1− 4λGB
2

L2

Computation of the Weyl anomaly for Gauss-Bonnet
gravity determines the CFT central charges in terms of
the Gauss-Bonnet parameter λGB [Nojiri, Odintsov].

c = 45π
L3
AdS

G(5)
N

√
1− 4λGB

a = 45π
L3
AdS

G(5)
N

[
−2 + 3

√
1− 4λ

]
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Fursaev’s proposal and Generalizations

A proposal for holographic EE in Gauss-Bonnet gravity
[Fursaev].

S(V ) =
1

4G(5)
N

∫
Σ

√
σ
(
1 + λGBL

2RΣ

)
Σ is the minimal surface ending on (∂V ) which satisfies
the e.o.m. derived from this action. RΣ is the induced
scalar curvature on Σ.

• Equal to Wald’s entropy formula.

• Satisfies all of the properties of EE, including strong
subadditivity [Headrick, Takayanagi].
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Holographic EE for a ball of radius R

Finding the exact minimal surface is a difficult problem.
Solving for the leading divergent terms in the EE is easy.

Consider the case of a ball. Write the AdS metric as

ds2
AdS = L2

AdS

[
dρ2

4ρ2
+

1

ρ

(
−dt2 + dr2 + r2dΩ2

2

)]
Symmetries indicate that Σ is determined by a single
function r(ρ). The e.o.m. in the vicinity of the boundary
ρ = 0 are solved by

r(ρ) = R−
ρ

2R
+ · · ·

Substitute into the “action” to arrive at

S(B) =
a

90

R2

ε2
+

a

90
ln ε+ · · ·
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Holographic EE for a cylinder and a belt

In similar manner, the leading divergent terms in the
EE of an infinite cylinder are

S(C) =
a

90

2πRl

4πε2
+

c

720

l

R
ln ε+ · · ·

For an infinite belt of width y the induced scalar curva-
ture RΣ vanishes. The result only differs from that of
Ruy-Takayanagi by the substitution of L→ LAdS.

S(S) =
3c− a

270π

 l2
ε2
− 4π

3
2

(
Γ[2

3
]

Γ[1
6
]

)3
l2

y2


Interesting to consider for confining backgrounds; qual-
itative features similar to those observed in [Klebanov,
Kutasov, Murugan].
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Holographic EE and Lovelock gravity

• Holographic results from Fursaev’s proposal in per-
fect agreement with Solodukhin’s.

A natural generalization of Fursaev’s proposal to any
Lovelock theory of gravity

S(V ) =
1

4G(d+1)
N

[d2]∑
p=0

(−)p+1(p+ 1)
(d− 2p− 2)!

(d− 2)!
λp+1

∫
Σ

√
σL(p)
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Summary, Conclusions and Open Questions

• Fursaev’s formula for the holographic calculation of
EE in Gauss-Bonnet gravity agrees with Solodukhin’s
result.

• There is a natural generalization of this proposal for
any Lovelock theory of gravity.

• Phase transition for the EE of a belt in a confining
background in Gauss-Bonnet gravity.

Open Questions:

• Generalization of Solodukhin’s result to higher di-
mensional CFTs.
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Summary, Conclusions and Open Questions

• A proposal for EE in any theory of higher derivative
gravity.

• Helpful perhaps towards finding the analog of

Zamolodchikov’s theorem in higher dimensions?
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