Universal type IIA de Sitter solutions at tree-level

Based on 1003.3590 with Ulf Danielsson and Thomas Van Riet, and older work: 0812.3551 with Caviezel, Körs, Lüst, Wrase and Zagermann http://itf.fys.kuleuven.be/~koerber/talks.html

Kolymvari, Crete, 16 September 2010

Paul Koerber

Instituut voor Theoretische Fysica, K.U. Leuven

Motivation I

Compactifications of string theory with $\Lambda>0$ in 4D

Motivation I

Compactifications of string theory with $\Lambda>0$ in 4D

- Inflation in the early universe
- $\bullet~$ Current small positive Λ

Motivation I

Compactifications of string theory with $\Lambda>0$ in 4D

- Inflation in the early universe
- Current small positive Λ

Goal: construct a completely explicit and simple dS solution

Motivation I

Compactifications of string theory with $\Lambda>0$ in 4D

- Inflation in the early universe
- Current small positive Λ

Goal: construct a completely explicit and simple dS solution

- Classical in $\alpha', g_S \rightarrow$ solution of supergravity eoms
- Clear 10d interpretation: compact internal manifold
- Limit ingredients to what is well-understood: avoid e.g. non-geometric fluxes

Motivation II

In this talk:

- Focus on type IIA supergravity
- Derive simple set of conditions on the geometry for obtaining dS solutions
- Present a one-dimensional family of examples on SU(2)×SU(2)

Motivation II

In this talk:

- Focus on type IIA supergravity
- Derive simple set of conditions on the geometry for obtaining dS solutions
- Present a one-dimensional family of examples on SU(2)×SU(2)

Do not expect too much!

- Still far from realistic
- In particular: tachyonic modes
- Smeared orientifolds

Why so difficult?

• For susy solutions: susy conditions together with Bianchi identities form fields imply all other sugra eoms

Lüst, Tsimpis; Gauntlett, Martelli, Sparks, Waldram; PK, Tsimpis

Why so difficult?

- For susy solutions: susy conditions together with Bianchi identities form fields imply all other sugra eoms *Lüst*, *Tsimpis*; *Gauntlett*, *Martelli*, *Sparks*, *Waldram*; *PK*, *Tsimpis*
- dS solutions break susy: solve full sugra eoms

Why so difficult?

 For susy solutions: susy conditions together with Bianchi identities form fields imply all other sugra eoms Lüst, Tsimpis; Gauntlett, Martelli, Sparks, Waldram; PK, Tsimpis

• dS solutions break susy: solve full sugra eoms

But there is more...

 Maldacena-Núñez: compactifications to dS or Minkowski with fluxes need negative-tension sources

 Maldacena-Núñez: compactifications to dS or Minkowski with fluxes need negative-tension sources
String theory provides such negative-tension sources: O-planes

- Maldacena-Núñez: compactifications to dS or Minkowski with fluxes need negative-tension sources
 String theory provides such negative-tension sources: O-planes
- Hertzberg, Kachru, Taylor, Tegmark: dS or inflation in type IIA impossible on a Calabi-Yau manifold $(R_6 = 0)$ with only fluxes, D6-branes and O6-planes

- Maldacena-Núñez: compactifications to dS or Minkowski with fluxes need negative-tension sources
 String theory provides such negative-tension sources: O-planes
- Hertzberg, Kachru, Taylor, Tegmark: dS or inflation in type IIA impossible on a Calabi-Yau manifold $(R_6 = 0)$ with only fluxes, D6-branes and O6-planes It turns out we need: $R_6 < 0$ (geometric fluxes) and Romans mass $m \neq 0$ Hague, Shiu, Underwood, Van Riet

- Maldacena-Núñez: compactifications to dS or Minkowski with fluxes need negative-tension sources
 String theory provides such negative-tension sources: O-planes
- Hertzberg, Kachru, Taylor, Tegmark: dS or inflation in type IIA impossible on a Calabi-Yau manifold $(R_6 = 0)$ with only fluxes, D6-branes and O6-planes It turns out we need: $R_6 < 0$ (geometric fluxes) and Romans mass $m \neq 0$ Hague, Shiu, Underwood, Van Riet Or more exotic ingredients: NS5-branes, KK-monopoles Silverstein or non-geometric fluxes

- Maldacena-Núñez: compactifications to dS or Minkowski with fluxes need negative-tension sources
 String theory provides such negative-tension sources: O-planes
- Hertzberg, Kachru, Taylor, Tegmark: dS or inflation in type IIA impossible on a Calabi-Yau manifold $(R_6 = 0)$ with only fluxes, D6-branes and O6-planes It turns out we need: $R_6 < 0$ (geometric fluxes) and Romans mass $m \neq 0$ Hague, Shiu, Underwood, Van Riet Or more exotic ingredients: NS5-branes, KK-monopoles Silverstein or non-geometric fluxes
- *Flauger, Paban, Robbins, Wrase*: rules out specific models with geometric fluxes; *Caviezel, PK, Körs, Lüst, Tsimpis, Zagermann*: rules out some coset models, retains SU(2)×SU(2)

- Maldacena-Núñez: compactifications to dS or Minkowski with fluxes need negative-tension sources
 String theory provides such negative-tension sources: O-planes
- Hertzberg, Kachru, Taylor, Tegmark: dS or inflation in type IIA impossible on a Calabi-Yau manifold $(R_6 = 0)$ with only fluxes, D6-branes and O6-planes It turns out we need: $R_6 < 0$ (geometric fluxes) and Romans mass $m \neq 0$ Hague, Shiu, Underwood, Van Riet Or more exotic ingredients: NS5-branes, KK-monopoles Silverstein or non-geometric fluxes
- *Flauger, Paban, Robbins, Wrase*: rules out specific models with geometric fluxes; *Caviezel, PK, Körs, Lüst, Tsimpis, Zagermann*: rules out some coset models, retains SU(2)×SU(2)
- *Douglas, Kallosh*: for $R_6 < 0$ we need: smeared orientifolds or warp factor or higher-order corrections

- Maldacena-Núñez: compactifications to dS or Minkowski with fluxes need negative-tension sources
 String theory provides such negative-tension sources: O-planes
- Hertzberg, Kachru, Taylor, Tegmark: dS or inflation in type IIA impossible on a Calabi-Yau manifold $(R_6 = 0)$ with only fluxes, D6-branes and O6-planes It turns out we need: $R_6 < 0$ (geometric fluxes) and Romans mass $m \neq 0$ Hague, Shiu, Underwood, Van Riet Or more exotic ingredients: NS5-branes, KK-monopoles Silverstein or non-geometric fluxes
- *Flauger, Paban, Robbins, Wrase*: rules out specific models with geometric fluxes; *Caviezel, PK, Körs, Lüst, Tsimpis, Zagermann*: rules out some coset models, retains SU(2)×SU(2)
- *Douglas, Kallosh*: for $R_6 < 0$ we need: smeared orientifolds or warp factor or higher-order corrections

The playground: type IIA supergravity

- Metric g
- NSNS-flux H

The playground: type IIA supergravity

- Metric g
- NSNS-flux H
- RR-fluxes: democratic formalism:

 \rightarrow double the fields

In IIA: $F_{(0)}$ (Romans mass m), $F_{(2)},\,F_{(4)},\,F_{(6)},\,F_{(8)},\,F_{(10)}$ Impose duality condition

The playground: type IIA supergravity

- Metric g
- NSNS-flux H
- RR-fluxes: democratic formalism: \rightarrow double the fields In IIA: $F_{(0)}$ (Romans mass m), $F_{(2)}$, $F_{(4)}$, $F_{(6)}$, $F_{(8)}$, $F_{(10)}$ Impose duality condition
- $\bullet\,$ Two opposite chirality gravitino fields $\Psi^{1,2}_M$ and dilatino fields $\lambda^{1,2}$

Compactification ansatz

Metric:

$$ds^{2} = e^{2A(y)}g_{(4)\mu\nu}(x)dx^{\mu}dx^{\nu} + g_{mn}(y)dy^{m}dy^{n} ,$$

with $g_{(4)}$ flat Minkowski, AdS₄ metric or dS₄ metric, A warp factor

Compactification ansatz

Metric:

$$ds^{2} = e^{2A(y)}g_{(4)\mu\nu}(x)dx^{\mu}dx^{\nu} + g_{mn}(y)dy^{m}dy^{n} ,$$

with $g_{(4)}$ flat Minkowski, AdS₄ metric or dS₄ metric, A warp factor • NSNS-flux H: purely internal

• RR-fluxes:

$$F = \sum_{l} F_{l} = \hat{F} + e^{4A} \mathrm{vol}_{4} \wedge F_{\mathrm{el}} , \qquad (F_{\mathrm{el}} = \star_{6} \sigma(\hat{F}))$$

where σ reverses the indices of a form

Learn from N = 1 susy AdS solutions with SU(3)-structure

• Susy implies the existence of nowhere-vanishing internal 6d spinor η_+ (and complex conjugate η_-)

Learn from N = 1 susy AdS solutions with SU(3)-structure

- Susy implies the existence of nowhere-vanishing internal 6d spinor η_+ (and complex conjugate $\eta_-)$
- Define forms:

$$J = \frac{i}{2||\eta||^2} \eta_+^{\dagger} \gamma_{i_1 i_2} \eta_+ dx^{i_1} \wedge dx^{i_2}$$
$$\Omega = \frac{1}{3!||\eta||^2} \eta_-^{\dagger} \gamma_{i_1 i_2 i_3} \eta_+ dx^{i_1} \wedge dx^{i_2} \wedge dx^{i_3}$$

Learn from N = 1 susy AdS solutions with SU(3)-structure

- Susy implies the existence of nowhere-vanishing internal 6d spinor η_+ (and complex conjugate η_-)
- Define forms:

$$J = \frac{i}{2||\eta||^2} \eta^{\dagger}_+ \gamma_{i_1 i_2} \eta_+ \mathrm{d} x^{i_1} \wedge \mathrm{d} x^{i_2}$$
$$\Omega = \frac{1}{3!||\eta||^2} \eta^{\dagger}_- \gamma_{i_1 i_2 i_3} \eta_+ \mathrm{d} x^{i_1} \wedge \mathrm{d} x^{i_2} \wedge \mathrm{d} x^{i_3}$$

• J and Ω define SU(3)-structure, not holonomy since generically $dJ \neq 0$, $d\Omega \neq 0$: geometric flux

Learn from N = 1 susy AdS solutions with SU(3)-structure

- Susy implies the existence of nowhere-vanishing internal 6d spinor η_+ (and complex conjugate $\eta_-)$
- Define forms:

$$J = \frac{i}{2||\eta||^2} \eta^{\dagger}_+ \gamma_{i_1 i_2} \eta_+ \mathrm{d} x^{i_1} \wedge \mathrm{d} x^{i_2}$$
$$\Omega = \frac{1}{3!|\eta||^2} \eta^{\dagger}_- \gamma_{i_1 i_2 i_3} \eta_+ \mathrm{d} x^{i_1} \wedge \mathrm{d} x^{i_2} \wedge \mathrm{d} x^{i_3}$$

- J and Ω define SU(3)-structure, not holonomy since generically $dJ \neq 0$, $d\Omega \neq 0$: geometric flux
- Susy conditions translate into condition $\mathrm{d}J$ and $\mathrm{d}\Omega$

Learn from N = 1 susy AdS solutions with SU(3)-structure

- Susy implies the existence of nowhere-vanishing internal 6d spinor η_+ (and complex conjugate $\eta_-)$
- Define forms:

$$J = \frac{i}{2||\eta||^2} \eta^{\dagger}_+ \gamma_{i_1 i_2} \eta_+ \mathrm{d} x^{i_1} \wedge \mathrm{d} x^{i_2}$$
$$\Omega = \frac{1}{3!||\eta||^2} \eta^{\dagger}_- \gamma_{i_1 i_2 i_3} \eta_+ \mathrm{d} x^{i_1} \wedge \mathrm{d} x^{i_2} \wedge \mathrm{d} x^{i_3}$$

- J and Ω define SU(3)-structure, not holonomy since generically $dJ \neq 0$, $d\Omega \neq 0$: geometric flux
- Susy conditions translate into condition $\mathrm{d}J$ and $\mathrm{d}\Omega$
- More general: η^1, η^2 : SU(3)×SU(3)-structure

SU(3)-structure AdS₄ solutions

Lüst, Tsimpis

SU(3)-structure AdS₄ solutions

Lüst, Tsimpis

• Geometric flux i.e. non-zero torsion classes:

SU(3)-structure AdS₄ solutions

Lüst, Tsimpis

• Geometric flux i.e. non-zero torsion classes:

$$dJ = \frac{3}{2} \text{Im} (\mathcal{W}_1 \Omega^*) + \mathcal{W}_4 \wedge J + \mathcal{W}_3$$
$$d\Omega = \mathcal{W}_1 J \wedge J + \mathcal{W}_2 \wedge J + \mathcal{W}_5^* \wedge \Omega$$

SU(3)-structure AdS₄ solutions

Lüst, Tsimpis

• Geometric flux i.e. non-zero torsion classes:

- $$\begin{split} \mathrm{d}J &= \frac{3}{2} \mathrm{Im} \left(\mathcal{W}_1 \Omega^* \right) \\ \mathrm{d}\Omega &= \mathcal{W}_1 J \wedge J + \mathcal{W}_2 \wedge J \end{split} \qquad \text{with} \qquad \begin{split} \mathcal{W}_1, \mathcal{W}_2 \text{ purely imaginary} \\ &\Rightarrow \mathsf{put} \ \mathcal{W}_1 = i \mathcal{W}_1, \ \mathcal{W}_2 = i \mathcal{W}_2, \end{split}$$
- Form-fluxes:

 AdS_4 superpotential W:

$$\begin{split} H &= \frac{2m}{5} e^{\Phi} \mathrm{Re}\,\Omega\\ e^{\Phi} \hat{F}_2 &= -\frac{W_1}{4} J - W_2\\ e^{\Phi} \hat{F}_4 &= \frac{3m}{10} J \wedge J\\ e^{\Phi} \hat{F}_6 &= \frac{9W_1}{4} \mathrm{vol}_6 \end{split}$$

$$\nabla_{\mu}\zeta_{-} = \frac{1}{2}W\gamma_{\mu}\zeta_{+} \quad \text{definition}$$
$$We^{i\theta} = -\frac{1}{5}e^{\Phi}m - \frac{3i}{4}W_{1}$$
$$R_{4} = 4\Lambda = -12|W|^{2}$$

Bianchi identities

• Susy not enough, add Bianchi identities form fields

Bianchi identities

• Susy not enough, add Bianchi identities form fields

Leads to

$$e^{2\Phi}m^2 = \mu + \frac{5}{16}\left(3(W_1)^2 - 2(W_2)^2\right) \ge 0$$

with $\mu > 0$: net orientifold charge, $\mu < 0$: net D-brane charge
Geometries

We have: set of conditions, can we find suitable geometry?

Geometries

We have: set of conditions, can we find suitable geometry? Conditions:

- $\bullet\,$ Only non-zero torsion classes purely imaginary $\mathcal{W}_1,\,\mathcal{W}_2$
- $e^{2\Phi}m^2 = \mu + \frac{5}{16} \left(3|\mathcal{W}_1|^2 2|\mathcal{W}_2|^2 \right) \ge 0$

Geometries

We have: set of conditions, can we find suitable geometry? Conditions:

 \bullet Only non-zero torsion classes purely imaginary $\mathcal{W}_1,\,\mathcal{W}_2$

•
$$e^{2\Phi}m^2 = \frac{5}{16} \left(3|\mathcal{W}_1|^2 - 2|\mathcal{W}_2|^2 \right) \ge 0$$

Solution without source term, put $\mu = 0$

Geometries

We have: set of conditions, can we find suitable geometry? Conditions:

 \bullet Only non-zero torsion classes purely imaginary $\mathcal{W}_1,\,\mathcal{W}_2$

•
$$e^{2\Phi}m^2 = \frac{5}{16} \left(3|\mathcal{W}_1|^2 - 2|\mathcal{W}_2|^2 \right) \ge 0$$

Solution without source term, put $\pmb{\mu}=0$ Geometries:

- Nearly-Kähler solutions *Behrndt, Cvetič* $W_2 = 0$ The only examples known are the homogeneous manifolds: $SU(2) \times SU(2), \frac{G_2}{SU(3)} = S^6, \frac{Sp(2)}{S(U(2) \times U(1))} = \mathbb{CP}^3, \frac{SU(3)}{U(1) \times U(1)}$
- Families of solutions on the above manifolds with $W_2 \neq 0$ Tomasiello; PK, Lüst, Tsimpis
- $\mu \neq 0$: e.g. Iwasawa manifold

Some ideas from the susy AdS solutions seem worth keeping:

• Internal manifold with SU(3)-structure and susy O-planes: still have N = 1 theory, but with non-susy solution

Some ideas from the susy AdS solutions seem worth keeping:

- Internal manifold with SU(3)-structure and susy O-planes: still have N = 1 theory, but with non-susy solution
- Ansatz: fluxes and sources expanded in J, Ω , torsion classes

Some ideas from the susy AdS solutions seem worth keeping:

- Internal manifold with SU(3)-structure and susy O-planes: still have N=1 theory, but with non-susy solution
- Ansatz: fluxes and sources expanded in J, Ω, torsion classes
 → these forms exist on all SU(3)-structure manifolds "universal ansatz"

Some ideas from the susy AdS solutions seem worth keeping:

- Internal manifold with SU(3)-structure and susy O-planes: still have N=1 theory, but with non-susy solution
- Ansatz: fluxes and sources expanded in J, Ω , torsion classes \rightarrow these forms exist on all SU(3)-structure manifolds "universal ansatz"

 \rightarrow express dS solution sugra eom in much simpler condition in terms of these forms

Some ideas from the susy AdS solutions seem worth keeping:

- Internal manifold with SU(3)-structure and susy O-planes: still have N=1 theory, but with non-susy solution
- Ansatz: fluxes and sources expanded in J, Ω , torsion classes
 - \rightarrow these forms exist on all SU(3)-structure manifolds

"universal ansatz"

 \rightarrow express dS solution sugra eom in much simpler condition in terms of these forms

 \rightarrow go through list SU(3)-structure manifolds to find suitable geometry that satisfies them

12 / 25

How to construct dS solutions?

Some ideas from the susy AdS solutions seem worth keeping:

- Internal manifold with SU(3)-structure and susy O-planes: still have N=1 theory, but with non-susy solution
- Ansatz: fluxes and sources expanded in J, Ω , torsion classes
 - \rightarrow these forms exist on all SU(3)-structure manifolds

"universal ansatz"

 \rightarrow express dS solution sugra eom in much simpler condition in terms of these forms

 \rightarrow go through list SU(3)-structure manifolds to find suitable geometry that satisfies them

Note: while susy AdS solutions are necessarily of this type, this is not the case for dS solutions

(example solvmanifold *Flauger*, *Paban*, *Robbins*, *Wrase*)

Some ideas from the susy AdS solutions seem worth keeping:

- Internal manifold with SU(3)-structure and susy O-planes: still have N=1 theory, but with non-susy solution
- Ansatz: fluxes and sources expanded in J, Ω , torsion classes
 - \rightarrow these forms exist on all SU(3)-structure manifolds

"universal ansatz"

 \rightarrow express dS solution sugra eom in much simpler condition in terms of these forms

 \rightarrow go through list SU(3)-structure manifolds to find suitable geometry that satisfies them

Note: while susy AdS solutions are necessarily of this type, this is not the case for dS solutions

(example solvmanifold Flauger, Paban, Robbins, Wrase)

Coset manifolds and group manifolds seem promising

Some ideas from the susy AdS solutions seem worth keeping:

- Internal manifold with SU(3)-structure and susy O-planes: still have N=1 theory, but with non-susy solution
- Ansatz: fluxes and sources expanded in J, Ω , torsion classes
 - \rightarrow these forms exist on all SU(3)-structure manifolds

"universal ansatz"

 \rightarrow express dS solution sugra eom in much simpler condition in terms of these forms

 \rightarrow go through list SU(3)-structure manifolds to find suitable geometry that satisfies them

Note: while susy AdS solutions are necessarily of this type, this is not the case for dS solutions

(example solvmanifold Flauger, Paban, Robbins, Wrase)

• Coset manifolds and group manifolds seem promising Everything is constant over the manifold

Some ideas from the susy AdS solutions seem worth keeping:

- Internal manifold with SU(3)-structure and susy O-planes: still have N=1 theory, but with non-susy solution
- Ansatz: fluxes and sources expanded in J, Ω , torsion classes
 - \rightarrow these forms exist on all SU(3)-structure manifolds

"universal ansatz"

 \rightarrow express dS solution sugra eom in much simpler condition in terms of these forms

 \rightarrow go through list SU(3)-structure manifolds to find suitable geometry that satisfies them

Note: while susy AdS solutions are necessarily of this type, this is not the case for dS solutions

(example solvmanifold Flauger, Paban, Robbins, Wrase)

 Coset manifolds and group manifolds seem promising Everything is constant over the manifold Approximation of constant warp factor & smeared orientifolds

13 / 25

The ansatz I

• Start with $W_1 = iW_1$, $W_2 = iW_2$

The ansatz I

- Start with $\mathcal{W}_1 = iW_1$, $\mathcal{W}_2 = iW_2$
- Ansatz tried by Danielsson, Haque, Shiu, Van Riet
- Problem: no known geometries solving their conditions

The ansatz I

- Start with $W_1 = iW_1$, $W_2 = iW_2$
- Ansatz tried by Danielsson, Haque, Shiu, Van Riet
- Problem: no known geometries solving their conditions
- Let's try adding $W_3 \rightarrow half-flat$ manifold

The ansatz I

- Start with $\mathcal{W}_1 = iW_1$, $\mathcal{W}_2 = iW_2$
- Ansatz tried by Danielsson, Haque, Shiu, Van Riet
- Problem: no known geometries solving their conditions
- Let's try adding $W_3 \rightarrow$ half-flat manifold
- The simplest dS solution we can find: put $W_2 = 0$
- Orientifold sources: like in susy case \rightarrow calibrated

The ansatz II

Geometry: SU(3)-structure with

$$\mathrm{d}J = rac{3}{2}W_1\mathrm{Re}\,\Omega + W_3\,,$$

 $\mathrm{d}\mathrm{Re}\,\Omega = 0\,,$
 $\mathrm{d}\mathrm{Im}\,\Omega = W_1J\wedge J.$

Put A = 0, Φ constant

The ansatz II

Geometry: SU(3)-structure with

$$dJ = \frac{3}{2}W_1 \text{Re}\,\Omega + W_3 ,$$

$$d\text{Re}\,\Omega = 0 ,$$

$$d\text{Im}\,\Omega = W_1 J \wedge J.$$

Put A = 0, Φ constant Flux & sources:

$$e^{\Phi}\hat{F}_{0} = f_{1} \qquad H = f_{5}\operatorname{Re}\Omega + f_{6}W_{3}$$

$$e^{\Phi}\hat{F}_{2} = f_{2}J \qquad e^{\Phi}j = j_{1}\operatorname{Re}\Omega + j_{2}W_{3}$$

$$e^{\Phi}\hat{F}_{4} = f_{3}J \wedge J$$

$$e^{\Phi}\hat{F}_{6} = f_{4}\operatorname{vol}_{6}$$

Supergravity equations of motion

Sugra eom with calibrated sources (taken from *PK*, *Tsimpis*) Compactification ansatz, A = 0, Φ constant

Supergravity equations of motion

Sugra eom with calibrated sources (taken from *PK*, *Tsimpis*) Compactification ansatz, A = 0, Φ constant

$$\begin{split} \mathrm{d}\hat{F}_{2} + H\hat{F}_{0} &= -j, & (\mathrm{Bianchi}\;\hat{F}_{2}) \\ \mathrm{d}\star_{6}\;\hat{F}_{4} - H \wedge \star_{6}\hat{F}_{6} &= 0, & (\mathrm{eom}\;\hat{F}_{4}) \\ \mathrm{d}(e^{-2\Phi}\star_{6}\;H) - (\star_{6}\hat{F}_{2})\hat{F}_{0} - (\star_{6}\hat{F}_{4}) \wedge \hat{F}_{2} - (\star_{6}\hat{F}_{6}) \wedge \hat{F}_{4} &= 0, & (\mathrm{eom}\;H) \\ 2(R_{4} + R_{6}) - H^{2} - e^{\Phi}\star_{6}\;(\mathrm{Im}\,\Omega \wedge j) &= 0, & (\mathrm{eom}\;H) \\ 2(R_{4} + e^{2\Phi}\sum_{n}(\tilde{F}_{(n)}^{2}) + e^{\Phi}\star_{6}\;(\mathrm{Im}\,\Omega \wedge j) &= 0, & (\mathrm{external}\;\mathrm{Einstein}) \\ -\frac{1}{2}H^{2} + \frac{1}{4}e^{2\Phi}\sum_{n}(5-n)\hat{F}_{(n)}^{2} + \frac{3}{4}e^{\Phi}\star_{6}\;(\mathrm{Im}\,\Omega \wedge j) &= 0, & (\mathrm{trace}\;\mathrm{Einstein}/\mathrm{eom}\;\Phi) \\ R_{ij} - \frac{1}{2}H_{i}\cdot H_{j} - \frac{1}{4}e^{2\Phi}\sum_{n}\left(\hat{F}_{(n)i}\cdot\hat{F}_{(n)j} - \tilde{F}_{(n)i}\cdot\tilde{F}_{(n)j}\right) \\ + \frac{1}{4}e^{\Phi}\left\{-g_{ij}\star_{6}\;(\mathrm{Im}\,\Omega \wedge j) + 2\star_{6}\left[(g_{k(i}\mathrm{d}x^{k} \wedge \iota_{j)}\mathrm{Im}\,\Omega) \wedge j\right]\right\} &= 0. & (\mathrm{Einstein}/\mathrm{eom}\;\Phi) \end{split}$$

Ricci tensor in terms of SU(3)-structures I

Bedulli, Vezzoni Decompose *R*_{ij} SU(3)-reps

$$R_{ij} = \frac{s(R_{ij})}{6}g_{ij} + R_{ij}^+ + R_{ij}^-$$

$$s(R_{ij})$$
 trace
 R^+_{ij} (1,1)-part: 8 of SU(3)
 R^-_{ij} (2,0)+(0,2)-part: 6 + $\overline{6}$ of SU(3)

Ricci tensor in terms of SU(3)-structures I

Bedulli, Vezzoni Decompose R_{ij} SU(3)-reps

$$R_{ij} = \frac{s(R_{ij})}{6}g_{ij} + R_{ij}^+ + R_{ij}^-$$

$$s(R_{ij})$$
 trace
 R^+_{ij} (1,1)-part: 8 of SU(3)
 R^-_{ij} (2,0)+(0,2)-part: 6 + $ar{6}$ of SU(3)

Associated primitive two- and three-form to ${\cal R}^+$ and ${\cal R}^-$

$$P_2(R_{ij}) = \frac{1}{2} J^k{}_i R^+_{kj} \mathrm{d}x^i \wedge \mathrm{d}x^j, \quad P_3(R_{ij}) = \frac{1}{2} R^-_{il} \Omega^l{}_{jk} \mathrm{d}x^i \wedge \mathrm{d}x^j \wedge \mathrm{d}x^k$$

Ricci tensor in terms of SU(3)-structures II

$$s(R_{ij}) = \frac{15}{2} (W_1)^2 - \frac{1}{2} (W_2)^2 - \frac{1}{2} (W_3)^2 ,$$

$$P_2(R_{ij}) = -\frac{1}{4} \star_6 (W_2 \wedge W_2) - \frac{1}{2} \star_6 d \star_6 \left(W_3 - \frac{1}{2} W_1 \text{Re} \Omega \right) ,$$

$$P_3(R_{ij}) = 2W_1 W_3|_{(2,1)} + 2 dW_2|_{(2,1)} - \frac{1}{4} Q(W_3, W_3)$$

with

$$Q(W_3, W_3) = \left(\Omega^{ijk}\iota_j\iota_i W_3 \wedge \iota_k W_3\right)_{(2,1)},$$

Conditions

Plugging into sugra eom, we find

Conditions

Plugging into sugra eom, we find Conditions on torsion classes:

$$\begin{split} &W_2 = 0, \\ &d \star_6 W_3 \propto J \wedge J, \\ &(W_{3\,i} \cdot W_{3\,j})^+ = 0, \\ &Q(W_3, W_3) = q(W_3)_{2,1} \end{split}$$

And equations for the constants f_i, j_i in the ansatz

Solutions I

Standard orientifold ansatz sets $q/w_3 = 8/\sqrt{3}$ We then only find dS solutions with $f_3 = f_4 = 0$ Parameters: overall scale, dilaton and one extra parameter Take e.g. f_2/f_1

Solutions II

dS solutions with $4.553 < w_3/W_1 < 3\sqrt{3}$ \blacktriangleright

Example: $SU(2) \times SU(2)$

Conclusions

Example: $SU(2) \times SU(2)$

Example on group manifold $SU(2) \times SU(2)$ On group manifold: left-invariant forms e^i :

$$\mathrm{d}e^i = \frac{1}{2}f^i{}_{jk}e^j \wedge e^k$$

Example: $SU(2) \times SU(2)$

Conclusions

Example: $SU(2) \times SU(2)$

Example on group manifold $SU(2) \times SU(2)$ On group manifold: left-invariant forms e^i :

$$\mathrm{d}e^i = \frac{1}{2}f^i{}_{jk}e^j \wedge e^k$$

In our basis:

$$f^1{}_{23} = f^1{}_{45} = f^2{}_{56} = f^3{}_{64} = \frac{1}{2}$$
 and cyclic .

Example: $SU(2) \times SU(2)$

Conclusions

Example: $SU(2) \times SU(2)$

Example on group manifold $SU(2) \times SU(2)$ On group manifold: left-invariant forms e^i :

$$\mathrm{d}e^i = \frac{1}{2}f^i{}_{jk}e^j \wedge e^k$$

In our basis:

$$f^{1}_{23} = f^{1}_{45} = f^{2}_{56} = f^{3}_{64} = \frac{1}{2}$$
 and cyclic.

Four orientifolds (compatible SU(3)-structure)

Solution I

Solution on $SU(2) \times SU(2)$ reads

$$J = a(e^{16} - e^{24} + e^{35}),$$

$$\operatorname{Re}\Omega = v_1(e^{456} + e^{236} + e^{125}) + (a^6/(v_1)^3) e^{134}$$

$$\operatorname{Im}\Omega = (a^3/v_1) (e^{123} + e^{145} - e^{346}) - ((v_1)^3/a^3) e^{256}$$

Parameters: a (scale), v_1 shape

Solution I

Solution on $SU(2) \times SU(2)$ reads

$$J = a(e^{16} - e^{24} + e^{35}),$$

$$\operatorname{Re}\Omega = v_1(e^{456} + e^{236} + e^{125}) + (a^6/(v_1)^3) e^{134}$$

$$\operatorname{Im}\Omega = (a^3/v_1) (e^{123} + e^{145} - e^{346}) - ((v_1)^3/a^3) e^{256}$$

Parameters: a (scale), v_1 shape It follows:

$$\begin{split} g &= \operatorname{diag}\left(a^4/(v_1)^2, (v_1)^2/a^2, a^4/(v_1)^2, a^4/(v_1)^2, (v_1)^2/a^2, (v_1)^2/a^2\right), \\ W_1 &= \frac{a^6 + v_1^4}{4 \, a^5 v_1}, \qquad W_2 = 0, \\ W_3 &= \frac{a^6 - 3(v_1)^4}{8 \, a^5(v_1)^4} \left[(v_1)^4 (e^{456} + e^{236} + e^{125}) - 3 \, a^6 e^{134} \right] \\ &\Rightarrow w_3 &= \pm |W_3| = -\frac{\sqrt{3}(a^6 - 3(v_1)^4)}{4 a^5 v_1}, \quad q/w_3 = 8/\sqrt{3} \end{split}$$

Solution II

One easily checks conditions torsion classes:

$$\begin{split} W_2 &= 0, \\ d \star_6 W_3 \propto J \wedge J, \\ (W_{3i} \cdot W_{3j})^+ &= 0, \\ Q(W_3, W_3) &= 8/\sqrt{3}w_3(W_3)_{2,1} \end{split}$$

Furthermore

$$w_3/W_1 = \frac{\sqrt{3}(3(v_1)^4 - a^6)}{a^6 + (v_1)^4},$$

takes values between $-\sqrt{3}$ and $3\sqrt{3}$ (boundaries not included) \bigodot

Solution II

One easily checks conditions torsion classes:

$$\begin{split} W_2 &= 0, \\ d \star_6 W_3 \propto J \wedge J, \\ (W_{3i} \cdot W_{3j})^+ &= 0, \\ Q(W_3, W_3) &= 8/\sqrt{3}w_3(W_3)_{2,1} \end{split}$$

Furthermore

$$w_3/W_1 = \frac{\sqrt{3}(3(v_1)^4 - a^6)}{a^6 + (v_1)^4},$$

takes values between $-\sqrt{3}$ and $3\sqrt{3}$ (boundaries not included) $\, ullet \,$

- SU(2)×SU(2) seems to know about upper limit $3\sqrt{3}$
- Minkowski solution not present (we would need: $v_1/a^{3/2} \rightarrow \infty$)

Spectrum

Using 4D N = 1 supergravity technology we can calculate spectrum of left-invariant fluctuations. Contains tachyonic modes:

Conclusions

- We found simple conditions on geometry for having classical dS solutions
- We found geometry on $SU(2) \times SU(2)$ satisfying these conditions
- Problems: tachyonic modes & smeared orientifolds
- Are tachyons generic? (e.g. Gómez-Reino, Louis, Scrucca)
- Fully localized solutions with warp factor?
- Further work: systematic scan manifold & include $W_2 \neq 0$
- Study flux quantization

Universal type IIA de Sitter solutions at tree-level (Paul Koerber)

Conclusions

- We found simple conditions on geometry for having classical dS solutions
- We found geometry on $SU(2) \times SU(2)$ satisfying these conditions
- Problems: tachyonic modes & smeared orientifolds
- Are tachyons generic? (e.g. Gómez-Reino, Louis, Scrucca)
- Fully localized solutions with warp factor?
- Further work: systematic scan manifold & include $W_2 \neq 0$
- Study flux quantization

