# Integrability in $\mathrm{N}=4 \mathrm{SYM}$ theory 

Vladimir Kazakov<br>(ENS, Paris)

## Integrability in AdS/CFT

- Integrability is usually a 2D phenomenon (statistical mechanics on 2D lattice, quantum spin chains, (1+1)D quantum field theories, etc)
- Now possible for some super-conformal -Yang-Mills theories at $D=3,4 \ldots$
- Based on AdS/CFT duality to a very special 2D QFT's - superstring 6-models
- In light cone gauge it looks like a massive 6-model. Most of 2D integrability tools then applicable: S-matrix, asymptotic Bethe ansatz (ABA), Thermodynamic Bethe Ansatz (TBA) for finite volume spectrum, etc.
. .... Y-system (for planar $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}, \mathrm{AdS}_{4} / \mathrm{CFT}_{3}, \ldots$ )
Conjecture: it calculates anomalous dimensions of all local operators in four-dimensional planar superconformal YangMills (SYM) with $\mathrm{N}=4$ supersymmetries, at any coupling
- Further simplification: Y-system as Hirota discrete integrable dynamics


## Examples of Integrability in Gauge Theories

- QCD in Regge limit
- Spectrum of anomalous dimensions in planar N=4 SYM (AdS/CFT, TBA, Y-system)
- n-point correlators in N=4 SYM (talks of R.Janik, M.Costa, A.Tseytlin)
- Amplitudes and Wilson loops (Yangian symmetry, Y-system for strong coupling,...) (G.Korchemsky's talk)
- New integrable dualities

Minahan-Zarembo
Minahan-Zarem,
Gromov,Vieira,
Gromov,V.K.,Vieira

Zarembo
Gadde,Pomoni,Rastelli

- Different from BPS-integrability (starting from Seiberg-Witten ...) : in $N=4$ SYM we sum up 4D planar Feynman graphs!


## N=4 SYM as a superconformal 4D QFT

$$
\mathcal{S}_{S Y M}=\frac{1}{\lambda} \int d^{4} x \operatorname{Tr}\left(F^{2}+(\mathcal{D} \Phi)^{2}+\bar{\psi} \mathcal{D} \psi+\bar{\psi} \phi \Psi+[\Phi, \Phi]^{2}\right)
$$

- Operators in 4D

$$
\mathcal{O}(x)=\operatorname{Tr}[\underbrace{\mathcal{D D} \Psi \Psi \Phi \Phi \mathcal{D} \Psi \ldots]}_{L=\text { \#bosons }+ \text { \#fermions }}(x)
$$



- 4D Correlators (superconformal!):

$$
\begin{aligned}
\left\langle\mathcal{O}_{i}(x) \mathcal{O}_{j}(0)\right\rangle & =\frac{\delta_{i j}}{|x|^{2 \Delta_{j}(\lambda)}} \quad \\
\left\langle\mathcal{O}_{i}\left(x_{1}\right) \mathcal{O}_{j}\left(x_{2}\right) \mathcal{O}_{k}\left(x_{3}\right)\right\rangle & =\frac{C^{\text {non-trivial functions }} \begin{array}{l}
\text { of thooft coupling } \lambda!
\end{array}}{\left|x_{12}\right|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}\left|x_{23}\right|^{\Delta_{j}+\Delta_{k}-\Delta_{i}\left|x_{31}\right|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}}}
\end{aligned}
$$

## Anomalous dimensions in various limits

$$
\delta(\lambda, L, \ldots)=\Delta-\Delta_{0}
$$

- Perturbation theory: $\lambda \rightarrow 0, \quad L$ - fixed

$$
\delta \simeq \lambda f_{1}(L)+\lambda^{2} f_{2}(L)+\lambda^{3} f_{3}(L) \ldots
$$

1,2,3..-loops: integrable spin chain
Minahan,Zarembo
Beisert,Kristijanssen,Staudacher

- BFKL approx. for twist-2 operators $\mathcal{O}_{S}=\operatorname{Tr}\left[Z D^{S} Z\right]$

$$
\frac{S+1}{-\lambda}=\Psi\left(\frac{1}{2}-\frac{\Delta}{2}\right)+\Psi\left(\frac{1}{2}+\frac{\Delta}{2}\right)-2 \Psi(1) \quad \lambda \rightarrow 0, \quad S+1 \rightarrow 0, \quad \frac{S+1}{\lambda}-\text { fixed } \quad \text { Kotikov, Lipatov }
$$

- String (quasi)-classics: $\lambda \rightarrow \infty, \quad L \rightarrow \infty, \quad \frac{\lambda^{1 / 2}}{L}-\underset{\substack{\text { Frolov,Tseytlin, } \\ \text { Bohr-Sommerfeld }}}{\text { fixed }}$ $\delta \simeq \sqrt{\lambda}\left[g_{1}\left(\frac{\sqrt{\lambda}}{L}\right)+\frac{1}{\sqrt{\lambda}} g_{2}\left(\frac{\sqrt{\lambda}}{L}\right)+\frac{1}{\lambda} g_{3}\left(\frac{\sqrt{\lambda}}{L}\right)+\ldots\right] \quad \begin{aligned} & \text { V.K.,Marshakov,Minahan,Zaremb } \\ & \begin{array}{l}\text { Beisert,V.K.,Sakai,Zarembo } \\ \text { Roiban,Tseytlin, }\end{array}, 1 \text {, }\end{aligned}$
- Long operators, no wrappings: $\lambda$ - fixed, $L \rightarrow \infty \quad$ Asymptotic Bethe Ansatz

$$
\begin{equation*}
\delta \simeq L h(\lambda)+\mathcal{O}\left(e^{-L \epsilon(\lambda)}\right) \tag{ABA}
\end{equation*}
$$

Beisert,Staudacher
Beisert,Eden,Staudacher

- Strong coupling, short operators: $\lambda \rightarrow \infty, \quad L$ - fixed worldsheet perturbation

$$
\delta \simeq \lambda^{1 / 4} r_{1}(L)+\lambda^{-1 / 4} r_{2}(L)+\mathcal{O}\left(\lambda^{-3 / 4}\right)
$$

- Exact dimensions (all wrappings): Y-system and TBA

Gromov,V.K.,Vieira
Bombardelli,Fioravanti,Tateo Gromov,V.K.,Kozak,Vieira Arutyunov,Frolov

## SYM is Dual to Supersting $\sigma$-model on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

Super-conformal N=4 SYM symmetry $\operatorname{PSU}(2,2 \mid 4) \rightarrow$ isometry of string target space

- 2D 6-model
on a coset

$\operatorname{SU}(2,2 \mid 4)$

- Metsaev-Tseytlin action

$$
S_{M T}=\sqrt{\lambda} \operatorname{str} \int_{\mathcal{M}_{2}}\left[\left(J^{(2)}\right)^{2}-J^{(1)} \wedge J^{(3)}\right]
$$

## Classical integrability of superstring on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

- String equations of motion and constraints can be recasted into zero curvature condition

$$
(d+\mathcal{A}(z)) \wedge(d+\mathcal{A}(z))=0,
$$

for Lax connection rationally depending on a spectral parameter $Z$

$$
\mathcal{A}(z)=J^{(0)}+\frac{1}{2}\left(z^{-2}+z^{2}\right) J^{(2)}+\frac{1}{2}\left(z^{-2}-z^{2}\right) * J^{(2)}+z^{-1} J^{(1)}+z J^{(3)}
$$

- Monodromy matrix

$$
\Omega(z)=P \exp \oint_{\gamma} \mathcal{A}(z)
$$

encodes infinitely many conservation lows


- Finite gap method can be used to construct particular classical solutions

Finite gap method for classical superstring

- Algebraic curve for quasi-momenta: $\quad \mathcal{P}(p, z)=\operatorname{sdet}\left(e^{i p}-\Omega(z)\right) \sim \frac{0}{0}$

$$
\Omega(z)=\left\{e^{i \tilde{p}_{1}(z)}, e^{i \widetilde{p}_{2}(z)}, e^{i \tilde{p}_{3}(z)}, e^{i \tilde{p}_{4}(z)} \| e^{i \widehat{p}_{1}(z)}, e^{i \widehat{p}_{2}(z)}, e^{i \widehat{p}_{3}(z)}, e^{i \hat{p}_{4}(z)}\right\}
$$



- Cuts (gaps) connecting Riemann sheets define the motion
- Quantization: Cuts consist of condensed Bethe roots carrying the quanta of excitations.


## Weak coupling calculation by point splitting

- Tree level: $\Delta_{0}=\mathrm{L}$ (degeneracy)

- 2-loop:



## Perturbative integrability

- Interaction:


$$
\frac{1}{2} \operatorname{Tr}\left[\Phi_{a}, \Phi_{b}\right]^{2}=\operatorname{Tr}\left(\Phi_{a} \Phi_{b}\right)^{2}-\operatorname{Tr} \Phi_{a}^{2} \Phi_{b}^{2}
$$

$$
=\frac{\lambda}{8 \pi^{2}} \log \frac{1}{\epsilon}\left(\delta_{a b^{\prime}} \delta_{b a^{\prime}}-2 \delta_{a a^{\prime}} \delta_{b b^{\prime}}+C \delta_{a a^{\prime}} \delta_{b b^{\prime}}\right)
$$

$$
X=\Phi_{1}+i \Phi_{2}
$$

- "Vacuum" - BPS operator $\mathcal{O}_{\mathrm{BPS}}=\operatorname{Tr} Z^{L}$

$$
Y=\Phi_{3}+i \Phi_{4}
$$

$$
Z=\Phi_{5}+i \Phi_{6}
$$

- Example: $\operatorname{SU}(2)$ sector $\quad \mathcal{O}_{S U(2)}=\operatorname{Tr} X^{J} Z^{L-J}+$ permutations
- Dilatation operator = Heisenberg Hamiltonian, integrable by Bethe ansatz!

$$
\begin{gathered}
\hat{D}=L+\frac{\lambda}{16 \pi^{2}} \sum_{l=1}^{L}\left(1-\sigma_{l} \cdot \sigma_{l+1}\right)+ \\
\left(\frac{\lambda}{16 \pi^{2}}\right)^{2} \sum_{l=1}^{L}\left(\left(1-\sigma_{l} \cdot \sigma_{l+2}\right)-4\left(1-\sigma_{l} \cdot \sigma_{l+1}\right)\right)+O\left(\lambda^{3}\right) \\
\Delta=\Delta^{(0)}+\lambda \Delta^{(2)}+\lambda^{2} \Delta^{(4)}+\ldots
\end{gathered}
$$

## Exact spectrum at one loop

$$
\hat{D}=L+\frac{\lambda}{16 \pi^{2}} \sum_{l=1}^{L}\left(1-\sigma_{l} \cdot \sigma_{l+1}\right)+O\left(\lambda^{2}\right)
$$

$$
-Z-Z-X-Z-Z-X-Z-
$$

Rapidity parametrization: $\quad \mathrm{e}^{i p}=\frac{u+i / 2}{u-i / 2}$

$$
\left(\frac{u_{k}+i / 2}{u_{k}-i / 2}\right)^{L}=\prod_{(k \neq) j=1}^{J} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}
$$

Anomalous dimension:

$$
\Delta-L=\frac{\lambda}{8 \pi^{2}} \sum_{k=1}^{J} \frac{1}{u_{k}^{2}+1 / 4}
$$

## SYM perturbation theory and finite size (wrapping) effects

- Unwrapped graphs - described by asymptotic scattering on 1D "spin chain"

- Wrapped graphs : beyond S-matrix theory


$$
\mathcal{O}_{\text {Konish } i}=\operatorname{Tr}[\mathcal{D}, \mathrm{Z}]^{2}
$$

- We need to take into account the finite size effects - Y-system needed
- Important observation on string side: Lüscher corrections + integrability reproduce the direct perturbation theory at 4 loops.


## Exact one-particle dispersion relation

- Exact one particle dispersion relation:

Santambrogio,Zanon Beisert,Dippel,Staudacher N.Dorey

- Bound states (fusion!)
$\epsilon_{a}(p)=\sqrt{a^{2}+\lambda \sin ^{2} \frac{p_{a}}{2}}$
- Cassical spectral parameter $\boldsymbol{Z}$ related to quantum one by Zhukovsky map

$$
\text { cuts in complex } u \text {-plane }
$$

$$
u=\sqrt{\lambda}\left(z+\frac{1}{z}\right), \quad z=\frac{1}{2 \sqrt{\lambda}}\left(u+\sqrt{4 \lambda-u^{2}}\right)
$$

$$
-=-2 \sqrt{\lambda} \quad 2 \sqrt{\lambda} \longrightarrow
$$

- Parametrization for the dispersion relation:

$$
\begin{gathered}
p(u)=\frac{1}{i} \log \frac{z(u+i / 2)}{z(u-i / 2)} \\
\epsilon(u)=2 i \sqrt{\lambda} z(u-i / 2)-2 i \sqrt{\lambda} z(u+i / 2)+1
\end{gathered}
$$



- Motivation: differential $p(u) d u$ defines the canonical simplectic structure on the algebraic curve: Bohr-Sommerfeld quantization of a finite gap solution

$$
\oint_{A_{j}} p(u) d u=2 \pi\left(n_{j}+\frac{1}{2}\right)
$$

## S-matrix and integrable superspin chain




- Light cone gauge breaks the global and world-sheet Lorentz symmetries : psu(2,2|4)

- S-matrix of AdS/CFT via bootstrap à-la A.\&AI.Zamolodchikov

$$
\hat{\mathrm{S}}_{\mathrm{PSU}(2,2 \mid 4)}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=\mathrm{S}_{0}^{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) \times \hat{\mathrm{S}}_{\mathrm{SU}(2 \mid 2)}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) \times \hat{\mathrm{S}}_{\mathrm{SU}(2 \mid 2)}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)
$$

## Asymptotic Bethe Ansatz (ABA)

Beisert,Eden,Staudacher

$$
0=\left(e^{i L p_{j}} \prod_{k \neq j}^{M} \hat{S}\left(p_{j}, p_{k}\right)-1\right)
$$

- This periodicity condition is diagonalized by nested Bethe ansatz
- Energy of state

$$
E=\Delta-\Delta_{0}=\sum_{j=1}^{M} \epsilon\left(p_{j}\right)+O\left(e^{-c L}\right) \quad \begin{aligned}
& \text { finite size corrections, } \\
& \text { important for short operators! }
\end{aligned}
$$

- Results: ABA for dimensions of long YM operators (e.g., cusp dimension).


－Energy：$\Delta-\Delta_{0}=f_{\min }=\int \frac{d u}{2 \pi i} \partial_{u} \tilde{\epsilon}_{a} \log \left(1+Y_{a, 0}\right)$ ．
（anomalous dimension）
－$u_{j}$ obey the exact Bethe eq．：$\quad Y_{1,0}\left(u_{j}\right)+1=0$
－Knowing analyticity one transforms functional Y－system into integral（TBA）：

$$
\log Y_{a, s}=L \delta_{a, 0} \frac{\partial}{\partial u} \epsilon_{a}^{m i r}+\sum_{a^{\prime}, s^{\prime}} K_{a, s ; a^{\prime}, s^{\prime}} \log \left(1+Y_{a^{\prime}, s^{\prime}}(u)\right)
$$




## Y-system looks very "simple" and universal!

- Similar systems of equations in all known integrable $\sigma$-models
- What are its origins? Could we guess it without TBA?



## Y-system and Hirota eq.: discrete integrable dynamics

- Relation of Y-system to T-system (Hirota equation) (the Master Equation of Integrability!)

$$
Y_{a, s}=\frac{T_{a, s+1} T_{a, s-1}}{T_{a+1, s} T_{a-1, s}}
$$

$T_{a, s}\left(u+\frac{i}{2}\right) T_{a, s}\left(u-\frac{i}{2}\right)=T_{a, s-1}(u) T_{a, s+1}(u)+T_{a+1, s}(u) T_{a-1, s}(u)$


- Discrete classical integrable dynamics!
- General solution in half-plane lattice:

$$
T_{a, s}(u)=\operatorname{Det}_{1 \leq k, j \leq a} T_{1, s+k-j}\left(u+i \frac{k+j}{2}\right)
$$



## Quasiclassical solution of AdS/CFT Y-system

- Classical limit: highly excited long strings/operators, strong coupling:

$$
L \sim \sqrt{\lambda} \sim u \rightarrow \infty
$$

- Explicit u-shift in Hirota eq. dropped (only slow parametric dependence)

$$
T_{a, s}\left(u+\frac{1}{2-\sqrt{\lambda}}\right) T_{a, s}\left(u-\frac{i}{2 / \sqrt{x}}\right)=T_{a, s-1}(u) T_{a, s+1}(u)+T_{a+1, s}(u) T_{a-1, s}(u)
$$

- (Quasi)classical solution - su(2,2|4) character of classical monodromy matrix!

Gromov
Gromov,V.K., Tsuboi

$$
T_{a, s}=\operatorname{Tr}_{a, s} \Omega
$$

- (Quasi-)classics restored entirely from the Y -system!


## Classical finite gap solution

- Can be restored from Y-system in the limit $L \sim \sqrt{\lambda} \sim u \rightarrow \infty$

$$
\begin{aligned}
& y_{\hat{1}}=e^{-i \hat{p}_{1}}=\exp \left(-i \frac{L x /(2 g)-i \mathcal{Q}_{2} x}{x^{2}-1}-i H_{1}-i \bar{H}_{3}+i \bar{H}_{4}\right) \\
& x_{1}=e^{-i p_{1}}=\exp \left(-i \frac{L x /(2 g)+i \mathcal{Q}_{1}}{x^{2}-1}-i H_{1}+i H_{2}+i \bar{H}_{2}-i \bar{H}_{3}\right) \\
& x_{2}=e^{-i p_{2}}=\exp \left(-i \frac{L x /(2 g)+i \mathcal{Q}_{1}}{x^{2}-1}-i H_{2}+i H_{3}+i \bar{H}_{1}-i \bar{H}_{2}\right) \\
& y_{\widehat{2}}=e^{-i \widehat{p}_{2}}=\exp \left(-i \frac{L x /(2 g)-i \mathcal{Q}_{2} x}{x^{2}-1}+i H_{3}-i H_{4}+i \bar{H}_{1}\right) \\
& y_{\widehat{3}}=e^{-i \hat{p}_{3}}=\exp \left(+i \frac{L x /(2 g)-i \mathcal{Q}_{2} x}{x^{2}-1}-i H_{5}+i H_{4}-i \bar{H}_{7}\right) \\
& x_{3}=e^{-i p_{3}}=\exp \left(+i \frac{L x /(2 g)+i \mathcal{Q}_{1}}{x^{2}-1}+i H_{6}-i H_{5}-i \bar{H}_{7}+i \bar{H}_{6}\right) \\
& x_{4}=e^{-i p_{4}}=\exp \left(+i \frac{L x /(2 g)+i \mathcal{Q}_{1}}{x^{2}-1}+i H_{7}-i H_{6}-i \bar{H}_{6}+i \bar{H}_{5}\right) \\
& y_{\widehat{4}}=e^{-i \widehat{p}_{4}}=\exp \left(+i \frac{L x /(2 g)+i \mathcal{Q}_{2} x}{x^{2}-1}+i H_{7}+i \bar{H}_{5}-i \bar{H}_{4}\right) .
\end{aligned}
$$

$$
\text { resolvants: } \quad H_{a}=\sum_{j=1}^{K_{a}} \frac{x^{2}}{x^{2}-1} \frac{1}{x-x_{a, j}}, \quad \bar{H}_{a}(x)=H_{a}(1 / x)
$$

- Bohr-Sommerfeld quantization around a finite gap solution from quasimomenta - eigenvalues of the monodromy matrix
$E-E_{c l}=\oint \frac{d z}{2 \pi i} \frac{z}{\sqrt{1-z^{2}}} \partial_{z} \log \left[\prod_{i=1,2 ; j=3,4} \frac{\left(1-y_{i} / x_{j}\right)\left(1-x_{i} / y_{j}\right)}{\left(1-x_{i} / x_{j}\right)\left(1-y_{i} / y_{j}\right)}\right]=\int \frac{d u}{2 \pi i} \partial_{u} \epsilon_{a}(u) \log \left(1+Y_{a, 0}(u)\right)$


## (Super-)group theoretical origins

- A curious property of gl(N) representations with rectangular Young tableaux:

- For characters - simplified Hirota eq.: $\quad T_{a, s}^{2}=T_{a+1, s} T_{a-1, s}+T_{a, s+1} T_{a, s-1}$
- Boundary conditions for Hirota eq.: gl(K|M) representations in "fat hook":

- Solution: Jacobi-Trudi formula for $\mathrm{GL}(\mathrm{K} \mid \mathrm{M})$ characters

$$
T_{\{\lambda\}}[g]=\operatorname{det}_{1 \leq i, j \leq a} T_{1, \lambda_{i}-i+j}[g], \quad g \in G L(K \mid M) .
$$

## Super-characters: Fat Hook of $U(4 \mid 4)$ and T-hook of $\operatorname{SU}(2,2 \mid 4)$

- Generating function for symmetric representations:

$$
\begin{gathered}
w(z ; g)=\operatorname{sdet}(1-z g)^{-1} \quad g=\operatorname{diag}\left\{x_{1}, x_{2}, x_{3}, x_{4} \mid y_{\hat{1}}, y_{\hat{\jmath}}, y_{\hat{3}}, y_{\hat{4}}\right\} \in \operatorname{SU}(2,2 \mid 4) \\
T_{1, s}=\oint \frac{d z}{2 \pi i} z^{-s-1} w(z ; g)
\end{gathered}
$$



SU(2,2|4)


$\infty$ - dim. unitary highest weight representations of $u(2,2 \mid 4)$ !

- Amusing example: $u(2) \leftrightarrow u(1,1)$




## Solving full quantum Hirota in $\mathrm{U}(2,2 \mid 4)$ T-hook

- Replace gen. function: $w(z ; g)=\frac{\left(1-z y_{1}\right)\left(1-z y_{2}\right)}{\left(1-z x_{1}\right)\left(1-z x_{2}\right)} \frac{\left(1-z y_{3}\right)\left(1-z y_{4}\right)}{\left(1-z x_{3}\right)\left(1-z x_{4}\right)}=\sum_{s} T_{1, s} z^{s}$ by a generating functional

$$
z^{1 / 2} \Rightarrow D=e^{-\frac{i}{2} \partial_{u}}
$$

Tsuboi
Gromov, V.K., Tsuboi

$$
\left\{y_{1}\left|x_{1}, x_{2}\right| y_{2}, y_{3}\left|x_{3}, x_{4}\right| y_{4}\right\} \quad \Rightarrow \quad\left\{Y_{1}(u)\left|X_{1}(u), X_{2}(u)\right| Y_{2}(u), Y_{3}(u)\left|X_{3}(u), X_{4}(u)\right| Y_{4}(u)\right\}
$$

$$
\begin{aligned}
W & =\left[\left(1-D Y_{1} D\right) \frac{1}{\left(1-D X_{1} D\right)} \frac{1}{\left(1-D X_{2} D\right)}\left(1-D Y_{2} D\right)\right]_{+} \times\left[\left(1-D Y_{3} D\right) \frac{1}{\left(1-D X_{3} D\right)\left(1-D X_{4} D\right)}\left(1-D Y_{4} D\right)\right]_{-} \\
& =\sum_{s=-\infty}^{\infty} D^{s} T_{1, s} D^{s} \\
& {[\cdots]_{ \pm} \text {- expansion in } D^{ \pm 1}=e^{\mp \frac{i}{2} \partial_{u}} }
\end{aligned}
$$

- Parametrization in Baxter's Q-functions:

$$
\begin{aligned}
& Y_{1}=H_{R} F_{0}^{+} \frac{Q_{1}^{-}}{Q_{1}^{+}}, \quad X_{1}=H_{R} \frac{Q_{1}^{-} Q_{2}^{++}}{Q_{1}^{+} Q_{2}}, \quad X_{2}=H_{R} \frac{Q_{2}^{--} Q_{3}^{+}}{Q_{2} Q_{3}^{-}}, \quad Y_{2}=H_{R} \frac{Q_{3}^{+}}{Q_{3}^{-}} F_{4}^{-}, \\
& Y_{4}=H_{L} \frac{1}{F_{0}^{-}} \frac{Q_{7}^{+}}{Q_{7}^{-}}, \quad X_{4}=H_{L} \frac{Q_{7}^{+} Q_{6}^{--}}{Q_{7}^{-} Q_{6}}, \quad X_{3}=H_{L} \frac{Q_{6}^{++} Q_{5}^{-}}{Q_{6} Q_{5}^{+}}, \quad Y_{3}=H_{L} \frac{Q_{5}^{-}}{Q_{5}^{+}} \frac{1}{F_{4}^{+}} .
\end{aligned}
$$

- One can construct the Wronskian determinant solution: all T-functions (and $Y$-functions) in terms of 7 Q-functions

$$
f(x \pm i / 2) \equiv f^{ \pm}
$$

$$
f(x+i) \equiv f^{++}, \text {etc }
$$

## Asymptotic Bethe ansatz solution for Y-system

- Asymptotic S matrix theory also follows from Y-system

$$
L \rightarrow \infty, \quad \lambda \sim 1, \quad u \sim 1
$$

- From TBA: $\quad Y_{a, 0} \sim\left(\frac{x^{[-a]}}{x^{[+a]}}\right)^{L} \rightarrow 0$

$$
H_{L} \sim \frac{1}{H_{R}} \sim\left(\frac{x^{[-]}}{x^{[+]}}\right)^{L} \rightarrow 0
$$



SU(2,2|4)

- Parametrization in terms of Bethe roots:

$$
\begin{gathered}
F_{4}=\prod_{j} \frac{x-x_{4, j}^{+}}{x-x_{4, j}^{-}}, H_{R}=\left(\frac{x^{-}}{x^{+}}\right)^{\frac{L}{2}} \prod_{j} \frac{x^{+}-x_{4, j}^{-}}{x^{-}-x_{4, j}^{-}} \sigma\left(u, x_{4, j}^{ \pm}\right) \\
Q_{a}=\prod_{j=1}^{K_{a}}\left(x(u)-y_{a, j}\right) \prod_{j=1}^{\bar{K}_{a}}\left(\frac{1}{x(u)}-y_{\bar{a}, j}\right)
\end{gathered}
$$

- Dressing factor follows from the reality of Y -functions.
- Asymptotic Bethe equation: $\quad Y_{1,0}\left(u_{4, j}\right)+1 \simeq 0$


## For AdS/CFT, as for any sigma model...

- The origins of the Y -system are entirely algebraic: Hirota eq. for characters in a given "hook".
- Add the spectral parameter dependence... and solve Hirota equation!
- Analyticity in spectral parameter $\mathbf{u}$ is the most difficult part of the problem.
Some progress is being made...


## An inspiring example: $\operatorname{SU}(\mathrm{N})$ principal chiral field at finite volume

$$
\mathcal{S}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} x \operatorname{Tr}\left(g^{-1} \partial_{\mu} g(x)\right)^{2}, \quad g \in S U(N) .
$$

-Y -system $\Rightarrow$ Hirota dynamics in a in ( $\mathrm{a}, \mathrm{s}$ ) plane.

- General Wronskian solution in a strip:

Krichever,Lipan, Wiegmann,Zabrodin
$\mathrm{T}_{a, s}(u)=\left|\begin{array}{llll}\left\{\overline{\mathrm{Q}}_{1}^{[-s-2 j+1]}\right. & \ldots & \overline{\mathrm{Q}}_{N}^{[-s-2 j+1]} & \}_{j=1, \cdots a} \\ \left\{\mathrm{Q}_{1}^{[s-2 j-1]}\right. & \cdots & \mathrm{Q}_{N}^{[s-2 j-1]} & \}_{k=a+1, \cdots, N}\end{array}\right|$ $Q\left(x+\frac{i k}{2}\right) \equiv Q^{[k]}$

- Finite volume solution: finite system of NLIE: parametrization fixing the analytic structure:

- N-1 TBA equations fix $\mathrm{N}-1$ spectral densities $f_{k}(u)$

$$
\begin{aligned}
& \log Y_{a, 0}=-L m_{a} \sinh (2 \pi N u)+K_{a, a^{\prime}} * \log \left[\frac{\left(1+Y_{a^{\prime}, 1}\right)^{2}}{\left(1+Y_{a^{\prime}+1,0}\right)\left(1+Y_{a^{\prime}-1,0}\right)}\right], \quad \text { where } \quad Y_{a, s}=\frac{T_{a, s+1} T_{a, s-1}}{T_{a+1, s} T_{a-1, s}} \\
& a=1,2, \ldots, N-1
\end{aligned}
$$

Numerics for $\operatorname{SU}(\mathrm{N})_{\llcorner } \times \operatorname{SU}(\mathrm{N})_{\mathrm{R}}$ principal chiral field at finite size

Numerics for low-lying states $\mathrm{N}=3$
V.K.,Leurent


## Conclusions

- Non-trivial $\mathrm{D}=2,3,4, \ldots$ dimensional solvable quantum field theories!
- Y-system for exact spectrum of a few AdS/CFT dualities has passed many important checks.
- Y-system obeys integrable Hirota dynamics - can be made finite. General method of solving quantum 6 -models


## Future directions

- Why is $\mathrm{N}=4$ SYM integrable?
-What lessons for QCD?
- 1/N - expansion integrable?
- Amlitudes, correlators ... integrable?


## 3 point function of classical operators

- A generalization of Shapiro-Virasoro amplitudes
- Difficult problem, finite gap method should be considerably advanced
- Classical solution should satisfy the following multiplication rule for monodromy matrices: $\quad \Omega_{1}(u) \Omega_{2}(u)=\Omega_{3}(u)$

...or even 8-point correlators...


## END

