Correlation functions of operators dual to classical strings

Romuald A. Janik
Jagiellonian University
Kraków

\rightarrow RJ, P. Surówka, A. Wereszczyński: 1002.4613
Related talks by A. Tseytlin, M. Costa...

Main questions for a CFT

- Find the spectrum of conformal weights \equiv eigenvalues of the dilatation operator \equiv (anomalous) dimensions of operators

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

- Find the OPE coefficients $C_{i j k}$ defined through
$\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle=\frac{C_{i j k}}{\left|x_{1}-x_{2}\right| \Delta_{i}+\Delta_{j}-\Delta_{k}\left|x_{1}-x_{3}\right|_{i}+\Delta_{k}-\Delta_{j}\left|x_{2}-x_{3}\right| \Delta_{j}+\Delta_{k}-\Delta_{i}}$
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Main questions for a CFT

- Find the spectrum of conformal weights
> (igenvalues un tre-diatation uperator \equiv (anomalous) dimensions of operators

- Find the OPE coefficients $C_{i j k}$ defined through
$\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle=\frac{C_{i j k}}{\left|x_{1}-x_{2}\right| \Delta_{i}+\Delta_{j}-\Delta_{k}\left|x_{1}-x_{3}\right|^{i}+\Delta_{k}-\Delta_{j}\left|x_{2}-x_{3}\right| \Delta_{j}+\Delta_{k}-\Delta_{i}}$
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Main questions for a CFT

- Find the spectrum of conformal weights \equiv eigenvalues of the dilatation operator三 (anomalous) dimensions of operators
- Find the OPE coefficients $C_{i j k}$ defined through
$\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle=$
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Main questions for a CFT

- Find the spectrum of conformal weights \equiv eigenvalues of the dilatation operator \equiv (anomalous) dimensions of operators

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

- Find the OPE coefficients $C_{i j k}$ defined through
- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Main questions for a CFT

- Find the spectrum of conformal weights \equiv eigenvalues of the dilatation operator \equiv (anomalous) dimensions of operators

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

- Find the OPE coefficients $C_{i j k}$ defined through

$$
\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle=\frac{C_{i j k}}{\left|x_{1}-x_{2}\right|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}\left|x_{1}-x_{3}\right|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}\left|x_{2}-x_{3}\right|^{\Delta_{j}+\Delta_{k}-\Delta_{i}}}
$$

- Once \triangle_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

Main questions for a CFT

- Find the spectrum of conformal weights \equiv eigenvalues of the dilatation operator \equiv (anomalous) dimensions of operators

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

- Find the OPE coefficients $C_{i j k}$ defined through

$$
\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle=\frac{C_{i j k}}{\left|x_{1}-x_{2}\right|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}\left|x_{1}-x_{3}\right|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}\left|x_{2}-x_{3}\right|^{\Delta_{j}+\Delta_{k}-\Delta_{i}}}
$$

- Once Δ_{i} and $C_{i j k}$ are known, all higher point correlation functions are, in principle, determined explicitly.

How to find anomalous dimensions using AdS/CFT?

Anomalous dimensions of operators		Energies of the corresponding string states in $A d S_{5} \times S^{5}$

- One computes directly energies of string states
- Use integrability... \longrightarrow lots of information..
- But on the gauge theory side there is also an alternative (and equivalent) way using 2-point correlation functions

- It is natural to expect that on the string side of the correspondence this other way should also be possible

How to find anomalous dimensions using AdS/CFT?

Anomalous dimensions of operators		Energies of the corresponding string states in $A d S_{5} \times S^{5}$

- One computes directly energies of string states
- Use integrability... \longrightarrow lots of information
- But on the gauge theory side there is also an alternative (and equivalent) way using 2-point correlation functions
- It is natural to expect that on the string side of the correspondence this other way should also be possible

How to find anomalous dimensions using AdS/CFT?

Anomalous dimensions of operators		Energies of the corresponding string states in $A d S_{5} \times S^{5}$

- One computes directly energies of string states
- Use integrability... \longrightarrow lots of information... see the lecture of V. Kazakov
- But on the gauge theory side there is also an alternative (and equivalent) way using 2-point correlation functions

- It is natural to expect that on the string side of the correspondence this other way should also be possible

How to find anomalous dimensions using AdS/CFT?

Anomalous dimensions of operators		Energies of the corresponding string states in $A d S_{5} \times S^{5}$

- One computes directly energies of string states
- Use integrability... \longrightarrow lots of information... see the lecture of V. Kazakov
- But on the gauge theory side there is also an alternative (and equivalent) way using 2-point correlation functions

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

- It is natural to expect that on the string side of the correspondence this other way should also be possible

How to find anomalous dimensions using AdS/CFT?

Anomalous dimensions of operators		Energies of the corresponding string states in $A d S_{5} \times S^{5}$

- One computes directly energies of string states
- Use integrability... \longrightarrow lots of information... see the lecture of V. Kazakov
- But on the gauge theory side there is also an alternative (and equivalent) way using 2-point correlation functions

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

- It is natural to expect that on the string side of the correspondence this other way should also be possible

How to find anomalous dimensions using AdS/CFT?

- Having methods for computing correlation functions is interesting as for the OPE coefficients we do not have an alternative but to compute directly a 3-point correlation function

$$
\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle
$$

- This is well understood only for operators dual to supergravity fields (\equiv massless string states) - there one uses Green's functions of the corresponding fields
- But the corresponding operators are protected by supersymmetry and all have vanishing anomalous dimensions! Moreover the three point functions are also not renormalized...

How to find anomalous dimensions using AdS/CFT?

- Having methods for computing correlation functions is interesting as for the OPE coefficients we do not have an alternative but to compute directly a 3-point correlation function

$$
\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle
$$

- This is well understood only for operators dual to supergravity fields (\equiv massless string states) - there one uses Green's functions of the corresponding fields
- But the corresponding operators are protected by supersymmetry and all have vanishing anomalous dimensions! Moreover the three point functions are also not renormalized

How to find anomalous dimensions using AdS/CFT?

- Having methods for computing correlation functions is interesting as for the OPE coefficients we do not have an alternative but to compute directly a 3-point correlation function

$$
\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle
$$

- This is well understood only for operators dual to supergravity fields (\equiv massless string states) - there one uses Green's functions of the corresponding fields
- But the corresponding operators are protected by supersymmetry and all have vanishing anomalous dimensions! Moreover the three point functions are also not renormalized

How to find anomalous dimensions using AdS/CFT?

- Having methods for computing correlation functions is interesting as for the OPE coefficients we do not have an alternative but to compute directly a 3-point correlation function

$$
\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle
$$

- This is well understood only for operators dual to supergravity fields (\equiv massless string states) - there one uses Green's functions of the corresponding fields
- But the corresponding operators are protected by supersymmetry and all have vanishing anomalous dimensions!

> not renormalized.

How to find anomalous dimensions using AdS/CFT?

- Having methods for computing correlation functions is interesting as for the OPE coefficients we do not have an alternative but to compute directly a 3-point correlation function

$$
\left\langle O_{i}\left(x_{1}\right) O_{j}\left(x_{2}\right) O_{k}\left(x_{3}\right)\right\rangle
$$

- This is well understood only for operators dual to supergravity fields (\equiv massless string states) - there one uses Green's functions of the corresponding fields
- But the corresponding operators are protected by supersymmetry and all have vanishing anomalous dimensions! Moreover the three point functions are also not renormalized...

Goal

Ultimate goal: Develop methods for computing correlation functions of operators corresponding to massive string states

- This is certainly very difficult for generic string states
- We will consider classical string states — spinning strings in $\operatorname{AdS} S_{5} \times S^{5}$
- For these states, correlation functions should be accessible by a classical computation
- In this work we concentrated mainly on 2-point functions, for which we know the result

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

where Δ should be exactly equal to the energy of the corresponding classical string state

Goal

Ultimate goal: Develop methods for computing correlation functions of operators corresponding to massive string states

- This is certainly very difficult for generic string states
- We will consider classical string states — spinning strings in $\operatorname{AdS} 5 \times S^{5}$
- For these states, correlation functions should be accessible by a classical computation
- In this work we concentrated mainly on 2-point functions, for which we know the result

where Δ should be exactly equal to the energy of the corresponding classical string state

Goal

Ultimate goal: Develop methods for computing correlation functions of operators corresponding to massive string states

- This is certainly very difficult for generic string states
- We will consider classical string states - spinning strings in $\operatorname{AdS}_{5} \times S^{5}$
- For these states, correlation functions should be accessible by a classical computation
- In this work we concentrated mainly on 2-point functions, for which we know the result

where Δ should be exactly equal to the energy of the corresponding classical string state

Goal

Ultimate goal: Develop methods for computing correlation functions of operators corresponding to massive string states

- This is certainly very difficult for generic string states
- We will consider classical string states - spinning strings in $A d S_{5} \times S^{5}$
- For these states, correlation functions should be accessible by a classical computation
- In this work we concentrated mainly on 2-point functions, for which we know the result

where Δ should be exactly equal to the energy of the corresponding classical string state

Ultimate goal: Develop methods for computing correlation functions of operators corresponding to massive string states

- This is certainly very difficult for generic string states
- We will consider classical string states — spinning strings in $A d S_{5} \times S^{5}$
- For these states, correlation functions should be accessible by a classical computation
- In this work we concentrated mainly on 2-point functions, for which we know the result

where Δ should be exactly equal to the energy of the corresponding classical string state

Ultimate goal: Develop methods for computing correlation functions of operators corresponding to massive string states

- This is certainly very difficult for generic string states
- We will consider classical string states - spinning strings in $A d S_{5} \times S^{5}$
- For these states, correlation functions should be accessible by a classical computation
- In this work we concentrated mainly on 2-point functions, for which we know the result

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \Delta}}
$$

where Δ should be exactly equal to the energy of the corresponding classical string state

Classical spinning strings

- The string action in $A d S_{5} \times S^{5}$ has the form

$$
S_{\text {string }}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma(\text { Polyakov action })
$$

- Spinning strings are classical solutions at strong coupling with nonzero angular momenta (of order $\sqrt{\lambda}$).
- These solutions looks generically like a rotating string in the center of $A d S_{5} \times S^{5}$ - very far from the boundary
- On the gauge theory side this string configuration corresponds to a 'long' operator composed of very many fields
- The energy is a function of the angular momentae

$$
\Sigma=\Delta=\sqrt{\lambda} \Gamma^{\prime}\left(\Lambda_{i}, \ldots\right)
$$

- The corresponding two point correlation function should be equal to

$$
\langle O(0) O(x)\rangle=\frac{\text { const }}{|x|^{2 \Delta}} \sim e^{-2 \sqrt{\lambda} \cdot F\left(J_{1}, \ldots\right) \cdot \log |x|}
$$

so should be accessible by a classical string computation...

Classical spinning strings

- The string action in $A d S_{5} \times S^{5}$ has the form

$$
S_{\text {string }}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma(\text { Polyakov action })
$$

- Spinning strings are classical solutions at strong coupling with nonzero angular momenta (of order $\sqrt{\lambda}$).
- These solutions looks generically like a rotating string in the center of $A d S_{5} \times S^{5}$ - very far from the boundary
- On the gauge theory side this string configuration corresponds to a 'long' operator composed of very many fields
- The energy is a function of the angular momentae

$$
E=\Delta=\sqrt{\lambda} F\left(J_{i}, \ldots\right)
$$

- The corresponding two point correlation function should be equal to

Classical spinning strings

- The string action in $A d S_{5} \times S^{5}$ has the form

$$
S_{\text {string }}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma(\text { Polyakov action })
$$

- Spinning strings are classical solutions at strong coupling with nonzero angular momenta (of order $\sqrt{\lambda}$).
- These solutions looks generically like a rotating string in the center of $A d S_{5} \times S^{5}$ - very far from the boundary
- On the gauge theory side this string configuration corresponds to a 'long' operator composed of very many fields
- The energy is a function of the angular momentae

- The corresponding two point correlation function should be equal to

so should be accessible by a classical string computation...

Classical spinning strings

- The string action in $A d S_{5} \times S^{5}$ has the form

$$
S_{\text {string }}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma(\text { Polyakov action })
$$

- Spinning strings are classical solutions at strong coupling with nonzero angular momenta (of order $\sqrt{\lambda}$).
- These solutions looks generically like a rotating string in the center of $A d S_{5} \times S^{5}$ - very far from the boundary
- On the gauge theory side this string configuration corresponds to a 'long' operator composed of very many fields
- The energy is a function of the angular momentae
- The corresponding two point correlation function should be equal to

so should be accessible by a classical string computation...

Classical spinning strings

- The string action in $A d S_{5} \times S^{5}$ has the form

$$
S_{\text {string }}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma(\text { Polyakov action })
$$

- Spinning strings are classical solutions at strong coupling with nonzero angular momenta (of order $\sqrt{\lambda}$).
- These solutions looks generically like a rotating string in the center of $A d S_{5} \times S^{5}$ - very far from the boundary
- On the gauge theory side this string configuration corresponds to a 'long' operator composed of very many fields
- The energy is a function of the angular momentae
- The corresponding two point correlation function should be equal to

so should be accessible by a classical string computation.

Classical spinning strings

- The string action in $A d S_{5} \times S^{5}$ has the form

$$
S_{\text {string }}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma(\text { Polyakov action })
$$

- Spinning strings are classical solutions at strong coupling with nonzero angular momenta (of order $\sqrt{\lambda}$).
- These solutions looks generically like a rotating string in the center of $A d S_{5} \times S^{5}$ - very far from the boundary
- On the gauge theory side this string configuration corresponds to a 'long' operator composed of very many fields
- The energy is a function of the angular momentae

$$
E=\Delta=\sqrt{\lambda} F\left(J_{i}, \ldots\right)
$$

- The corresponding two point correlation function should be equal to

so should be accessible by a classical string computation.

Classical spinning strings

- The string action in $A d S_{5} \times S^{5}$ has the form

$$
S_{\text {string }}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma(\text { Polyakov action })
$$

- Spinning strings are classical solutions at strong coupling with nonzero angular momenta (of order $\sqrt{\lambda}$).
- These solutions looks generically like a rotating string in the center of $A d S_{5} \times S^{5}$ - very far from the boundary
- On the gauge theory side this string configuration corresponds to a 'long' operator composed of very many fields
- The energy is a function of the angular momentae

$$
E=\Delta=\sqrt{\lambda} F\left(J_{i}, \ldots\right)
$$

- The corresponding two point correlation function should be equal to

$$
\langle O(0) O(x)\rangle=\frac{\text { const. }}{|x|^{2 \Delta}} \sim e^{-2 \sqrt{\lambda} \cdot F\left(J_{i}, \ldots\right) \cdot \log |x|}
$$

so should be accessible by a classical string computation.

Classical spinning strings

- The string action in $A d S_{5} \times S^{5}$ has the form

$$
S_{\text {string }}=\frac{\sqrt{\lambda}}{4 \pi} \int d^{2} \sigma(\text { Polyakov action })
$$

- Spinning strings are classical solutions at strong coupling with nonzero angular momenta (of order $\sqrt{\lambda}$).
- These solutions looks generically like a rotating string in the center of $A d S_{5} \times S^{5}$ - very far from the boundary
- On the gauge theory side this string configuration corresponds to a 'long' operator composed of very many fields
- The energy is a function of the angular momentae

$$
E=\Delta=\sqrt{\lambda} F\left(J_{i}, \ldots\right)
$$

- The corresponding two point correlation function should be equal to

$$
\langle O(0) O(x)\rangle=\frac{\text { const. }}{|x|^{2 \Delta}} \sim e^{-2 \sqrt{\lambda} \cdot F\left(J_{i}, \ldots\right) \cdot \log |x|}
$$

so should be accessible by a classical string computation...

Two point correlation functions

- In the AdS/CFT correspondence the prescription for two point functions involves essentially the Green's function of the corresponding field
- We expect to have, for each spinning string solution and any two arbitrary points on the boundary, a new classical string solution which should determine the two point correlation function giving the same anomalous dimension
- Proceed first to the analog of an ordinary point particle exchange...

Two point correlation functions

- In the AdS/CFT correspondence the prescription for two point functions involves essentially the Green's function of the corresponding field
- We expect to have, for each spinning string solution and any two arbitrary points on the boundary, a new classical string solution which should determine the two point correlation function giving the same anomalous dimension
- Proceed first to the analog of an ordinary point particle exchange.

Two point correlation functions

- In the AdS/CFT correspondence the prescription for two point functions involves essentially the Green's function of the corresponding field

- We expect to have, for each spinning string solution and any two arbitrary points on the boundary, a new classical string solution which should determine the two point correlation function giving the same anomalous dimension
- Proceed first to the analog of an ordinary point particle exchange.

Two point correlation functions

- In the AdS/CFT correspondence the prescription for two point functions involves essentially the Green's function of the corresponding field

- We expect to have, for each spinning string solution and any two arbitrary points on the boundary, a new classical string solution which should determine the two point correlation function giving the same anomalous dimension
- Proceed first to the analog of an ordinary point particle exchange.

Two point correlation functions

- In the AdS/CFT correspondence the prescription for two point functions involves essentially the Green's function of the corresponding field

- We expect to have, for each spinning string solution and any two arbitrary points on the boundary, a new classical string solution which should determine the two point correlation function giving the same anomalous dimension
- Proceed first to the analog of an ordinary point particle exchange...

A point particle example - flat space

- The Green's function $G(x, y)$ for a particle of mass m can be found by evaluating the (Polyakov) worldline action leading to

$$
\int_{0}^{\infty} d s \int\left[d x^{\mu}\right](\text { measure }) \exp \left(-\frac{1}{2} \int_{0}^{s}\left(\dot{x}^{2}+m^{2}\right) d t\right)
$$

- Evaluate by saddle point:
i) use $x^{\mu}(t)=\left(y^{\mu}-x^{\mu}\right) t / s+x^{\mu}$ giving

$$
S_{P}=\frac{1}{2}\left(\frac{|x-y|^{2}}{s}+m^{2} s\right)
$$

ii) perform the saddle point w.r.t. the modular parameter s

$$
G(x, y) \sim e^{-m|x-y|}
$$

- The standard scalar $G(x, y)$ can be obtained by evaluating the path integral exactly [Cohen, Moore, Nelson, Polchinski]

A point particle example - flat space

- The Green's function $G(x, y)$ for a particle of mass m can be found by evaluating the (Polyakov) worldline action leading to

$$
\int_{0}^{\infty} d s \int\left[d x^{\mu}\right](\text { measure }) \exp \left(-\frac{1}{2} \int_{0}^{s}\left(\dot{x}^{2}+m^{2}\right) d t\right)
$$

- Evaluate by saddle point:
i) use $x^{\mu}(t)=\left(y^{\mu}-x^{\mu}\right) t / s+x^{\mu}$ giving

ii) perform the saddle point w.r.t. the modular parameter s
- The standard scalar $G(x, y)$ can be obtained by evaluating the path integral exactly

A point particle example - flat space

- The Green's function $G(x, y)$ for a particle of mass m can be found by evaluating the (Polyakov) worldline action leading to

$$
\int_{0}^{\infty} d s \int\left[d x^{\mu}\right](\text { measure }) \exp \left(-\frac{1}{2} \int_{0}^{s}\left(\dot{x}^{2}+m^{2}\right) d t\right)
$$

- Evaluate by saddle point:
i) use $x^{\mu}(t)=\left(y^{\mu}-x^{\mu}\right) t / s+x^{\mu}$ giving

ii) perform the saddle point w.r.t. the modular parameter s

- The standard scalar $G(x, y)$ can be obtained by evaluating the path integral exactly

A point particle example - flat space

- The Green's function $G(x, y)$ for a particle of mass m can be found by evaluating the (Polyakov) worldline action leading to

$$
\int_{0}^{\infty} d s \int\left[d x^{\mu}\right](\text { measure }) \exp \left(-\frac{1}{2} \int_{0}^{s}\left(\dot{x}^{2}+m^{2}\right) d t\right)
$$

- Evaluate by saddle point:
i) use $x^{\mu}(t)=\left(y^{\mu}-x^{\mu}\right) t / s+x^{\mu}$ giving

ii) perform the saddle point w.r.t. the modular parameter s

- The standard scalar $G(x, y)$ can be obtained by evaluating the path integral exactly

A point particle example - flat space

- The Green's function $G(x, y)$ for a particle of mass m can be found by evaluating the (Polyakov) worldline action leading to

$$
\int_{0}^{\infty} d s \int\left[d x^{\mu}\right](\text { measure }) \exp \left(-\frac{1}{2} \int_{0}^{s}\left(\dot{x}^{2}+m^{2}\right) d t\right)
$$

- Evaluate by saddle point:
i) use $x^{\mu}(t)=\left(y^{\mu}-x^{\mu}\right) t / s+x^{\mu}$ giving

$$
S_{P}=\frac{1}{2}\left(\frac{|x-y|^{2}}{s}+m^{2} s\right)
$$

ii) perform the saddle point w.r.t. the modular parameter s

- The standard scalar $G(x, y)$ can be obtained by evaluating the path integral exactly

A point particle example - flat space

- The Green's function $G(x, y)$ for a particle of mass m can be found by evaluating the (Polyakov) worldline action leading to

$$
\int_{0}^{\infty} d s \int\left[d x^{\mu}\right](\text { measure }) \exp \left(-\frac{1}{2} \int_{0}^{s}\left(\dot{x}^{2}+m^{2}\right) d t\right)
$$

- Evaluate by saddle point:
i) use $x^{\mu}(t)=\left(y^{\mu}-x^{\mu}\right) t / s+x^{\mu}$ giving

$$
S_{P}=\frac{1}{2}\left(\frac{|x-y|^{2}}{s}+m^{2} s\right)
$$

ii) perform the saddle point w.r.t. the modular parameter s

- The standard scalar $G(x, y)$ can be obtained by evaluating the path integral

A point particle example - flat space

- The Green's function $G(x, y)$ for a particle of mass m can be found by evaluating the (Polyakov) worldline action leading to

$$
\int_{0}^{\infty} d s \int\left[d x^{\mu}\right](\text { measure }) \exp \left(-\frac{1}{2} \int_{0}^{s}\left(\dot{x}^{2}+m^{2}\right) d t\right)
$$

- Evaluate by saddle point:
i) use $x^{\mu}(t)=\left(y^{\mu}-x^{\mu}\right) t / s+x^{\mu}$ giving

$$
S_{P}=\frac{1}{2}\left(\frac{|x-y|^{2}}{s}+m^{2} s\right)
$$

ii) perform the saddle point w.r.t. the modular parameter s

$$
G(x, y) \sim e^{-m|x-y|}
$$

- The standard scalar $G(x, y)$ can be obtained by evaluating the path integral exactly

A point particle example - flat space

- The Green's function $G(x, y)$ for a particle of mass m can be found by evaluating the (Polyakov) worldline action leading to

$$
\int_{0}^{\infty} d s \int\left[d x^{\mu}\right](\text { measure }) \exp \left(-\frac{1}{2} \int_{0}^{s}\left(\dot{x}^{2}+m^{2}\right) d t\right)
$$

- Evaluate by saddle point:
i) use $x^{\mu}(t)=\left(y^{\mu}-x^{\mu}\right) t / s+x^{\mu}$ giving

$$
S_{P}=\frac{1}{2}\left(\frac{|x-y|^{2}}{s}+m^{2} s\right)
$$

ii) perform the saddle point w.r.t. the modular parameter s

$$
G(x, y) \sim e^{-m|x-y|}
$$

- The standard scalar $G(x, y)$ can be obtained by evaluating the path integral exactly
[Cohen, Moore, Nelson, Polchinski]

A point particle example - $A d S_{5}$

- We use the Poincare coordinates of $A d S_{5}$

$$
d s_{A d S_{5}^{E}}^{2}=\frac{d x^{2}+d z^{2}}{z^{2}}
$$

- The Polyakov action becomes

$$
S_{p}=\frac{1}{2} \int_{-\frac{s}{2}}^{\frac{5}{2}} d \tau\left\{\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}+m_{A d S}^{2}\right\}
$$

- We impose the boundary conditions $x(-s / 2)=0, x(s / 2)=x$ and $z(\pm s / 2)=\varepsilon$
- The solutions of the equations of motions are

$$
x(\tau)=R \tanh \kappa \tau+x_{0} \quad z(\tau)=R \frac{1}{\cosh \kappa \tau}
$$

- Plugging it into the action yields

$$
S_{p}=\frac{1}{2}\left(k^{2}+m_{A d S}^{2}\right) s=\frac{1}{2}\left(\frac{4}{s^{2}} \log ^{2} \frac{x}{\varepsilon}+m_{A d S}^{2}\right) s
$$

A point particle example - $A d S_{5}$

- We use the Poincare coordinates of $A d S_{5}$

$$
d s_{A d S_{5}^{E}}^{2}=\frac{d x^{2}+d z^{2}}{z^{2}}
$$

- The Polyakov action becomes

- We impose the boundary conditions $x(-s / 2)=0, x(s / 2)=x$ and $z(\pm s / 2)=\varepsilon$
- The solutions of the equations of motions are

$$
x(\tau)=R \tanh \kappa \tau+x_{0}
$$

- Plugging it into the action yields

A point particle example - $A d S_{5}$

- We use the Poincare coordinates of $A d S_{5}$

$$
d s_{A d S_{5}^{E}}^{2}=\frac{d x^{2}+d z^{2}}{z^{2}}
$$

- The Polyakov action becomes

$$
S_{P}=\frac{1}{2} \int_{-\frac{s}{2}}^{\frac{s}{2}} d \tau\left\{\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}+m_{A d S}^{2}\right\}
$$

- We impose the boundary conditions $x(-s / 2)=0, x(s / 2)=x$ and
- The solutions of the equations of motions are

- Plugging it into the action yields

A point particle example - $A d S_{5}$

- We use the Poincare coordinates of $A d S_{5}$

$$
d s_{A d S_{5}^{E}}^{2}=\frac{d x^{2}+d z^{2}}{z^{2}}
$$

- The Polyakov action becomes

$$
S_{P}=\frac{1}{2} \int_{-\frac{5}{2}}^{\frac{s}{2}} d \tau\left\{\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}+m_{A d S}^{2}\right\}
$$

- We impose the boundary conditions $x(-s / 2)=0, x(s / 2)=x$ and $z(\pm s / 2)=\varepsilon$
- The solutions of the equations of motions are

- Plugging it into the action yields

A point particle example $-A d S_{5}$

- We use the Poincare coordinates of $\operatorname{AdS} S_{5}$

$$
d s_{A d S_{5}^{E}}^{2}=\frac{d x^{2}+d z^{2}}{z^{2}}
$$

- The Polyakov action becomes

$$
S_{P}=\frac{1}{2} \int_{-\frac{s}{2}}^{\frac{s}{2}} d \tau\left\{\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}+m_{A d S}^{2}\right\}
$$

- We impose the boundary conditions $x(-s / 2)=0, x(s / 2)=x$ and $z(\pm s / 2)=\varepsilon$
- The solutions of the equations of motions are

$$
x(\tau)=R \tanh \kappa \tau+x_{0} \quad z(\tau)=R \frac{1}{\cosh \kappa \tau}
$$

- Plugging it into the action yields

A point particle example $-A d S_{5}$

- We use the Poincare coordinates of $A d S_{5}$

$$
d s_{A d S_{5}^{E}}^{2}=\frac{d x^{2}+d z^{2}}{z^{2}}
$$

- The Polyakov action becomes

$$
S_{P}=\frac{1}{2} \int_{-\frac{5}{2}}^{\frac{s}{2}} d \tau\left\{\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}+m_{A d S}^{2}\right\}
$$

- We impose the boundary conditions $x(-s / 2)=0, x(s / 2)=x$ and $z(\pm s / 2)=\varepsilon$
- The solutions of the equations of motions are

$$
x(\tau)=R \tanh \kappa \tau+x_{0} \quad z(\tau)=R \frac{1}{\cosh \kappa \tau}
$$

- Plugging it into the action yields

$$
S_{P}=\frac{1}{2}\left(\kappa^{2}+m_{A d S}^{2}\right) s=\frac{1}{2}\left(\frac{4}{s^{2}} \log ^{2} \frac{x}{\varepsilon}+m_{A d S}^{2}\right) s
$$

A point particle example - $A d S_{5}$

- Extremizing w.r.t. the modular parameter gives

$$
G(0, x)=e^{-S_{P}}=e^{-2 m_{\text {AdS }} \log \frac{x}{\varepsilon}}=\left(\frac{|x|}{\varepsilon}\right)^{-2 m_{\text {AdS }}}
$$

- We recovered the standard relation between particle masses in AdS and operator dimensions in the large mass limit $\Delta=m_{A d S}+$ corrections.

Proceed to the case of strings...

A point particle example $-A d S_{5}$

- Extremizing w.r.t. the modular parameter gives

$$
G(0, x)=e^{-S_{P}}=e^{-2 m_{A d S} \log \frac{x}{\varepsilon}}=\left(\frac{|x|}{\varepsilon}\right)^{-2 m_{A d S}}
$$

- We recovered the standard relation between particle masses in AdS and operator dimensions in the large mass limit $\Delta=m_{\text {AdS }}+$ corrections .

A point particle example - $A d S_{5}$

- Extremizing w.r.t. the modular parameter gives

$$
G(0, x)=e^{-S_{P}}=e^{-2 m_{A d S} \log \frac{x}{\varepsilon}}=\left(\frac{|x|}{\varepsilon}\right)^{-2 m_{A d S}}
$$

- We recovered the standard relation between particle masses in AdS and operator dimensions in the large mass limit $\Delta=m_{A d S}+$ corrections.

A point particle example - $A d S_{5}$

- Extremizing w.r.t. the modular parameter gives

$$
G(0, x)=e^{-S_{P}}=e^{-2 m_{A d S} \log \frac{x}{\varepsilon}}=\left(\frac{|x|}{\varepsilon}\right)^{-2 m_{A d S}}
$$

- We recovered the standard relation between particle masses in AdS and operator dimensions in the large mass limit $\Delta=m_{A d S}+$ corrections.

Proceed to the case of strings...

String cylinder amplitude - flat space

- The string analog of the preceeding setup is a cylinder amplitude
- A calculation in flat space in Euclidean signature (with pointlike boundary conditions) was performed by Cohen, Moore, Nelson, Polchinski

- This expression can be directly rewritten in terms of Green's functions of the intermediate string states

$$
\int_{0}^{\infty} \frac{d s}{s^{13}} \sum_{N=0}^{\infty} d_{N} e^{-4 \pi s m_{N}^{2}} e^{-\frac{(\Delta x)^{2}}{4 \pi s}}=\sum_{N=0}^{\infty} d_{N} \int \frac{d^{26} p}{(2 \pi)^{26}} \frac{e^{i p \Delta x}}{p^{2}+4 m_{N}^{2}}
$$

- We would like to know how to perform such a calculation in order to directly extract the contribution (Green's function) corresponding to a classical rotating string

String cylinder amplitude - flat space

- The string analog of the preceeding setup is a cylinder amplitude
- A calculation in flat space in Euclidean signature (with pointlike boundary conditions) was performed by Cohen, Moore, Nelson, Polchinski

- This expression can be directly rewritten in terms of Green's functions of the intermediate string states

- We would like to know how to perform such a calculation in order to directly extract the contribution (Green's function) corresponding to a classical rotating string

String cylinder amplitude - flat space

- The string analog of the preceeding setup is a cylinder amplitude
- A calculation in flat space in Euclidean signature (with pointlike boundary conditions) was performed by Cohen, Moore, Nelson, Polchinski

$$
\int_{0}^{\infty} \frac{d s}{s^{13}} \underbrace{e^{4 \pi s} \prod\left(1-e^{-4 \pi n s}\right)^{-24}}_{\text {fluctuation determinant }} \cdot \underbrace{e^{-\frac{(\Delta x)^{2}}{4 \pi s}}}_{e^{-S_{P}(\Delta x)}}
$$

- This expression can be directly rewritten in terms of Green's functions of the intermediate string states

- We would like to know how to perform such a calculation in order to directly extract the contribution (Green's function) corresponding to a classical rotating string

String cylinder amplitude - flat space

- The string analog of the preceeding setup is a cylinder amplitude
- A calculation in flat space in Euclidean signature (with pointlike boundary conditions) was performed by Cohen, Moore, Nelson, Polchinski

$$
\int_{0}^{\infty} \frac{d s}{s^{13}} \underbrace{e^{4 \pi s} \prod\left(1-e^{-4 \pi n s}\right)^{-24}}_{\text {fluctuation determinant }} \cdot \underbrace{e^{-\frac{(\Delta x)^{2}}{4 \pi s}}}_{e^{-s_{P}(\Delta x)}}
$$

- This expression can be directly rewritten in terms of Green's functions of the intermediate string states

$$
\int_{0}^{\infty} \frac{d s}{s^{13}} \sum_{N=0}^{\infty} d_{N} e^{-4 \pi s m_{N}^{2}} e^{-\frac{(\Delta x)^{2}}{4 \pi s}}=\sum_{N=0}^{\infty} d_{N} \int \frac{d^{26} p}{(2 \pi)^{26}} \frac{e^{i p \Delta x}}{p^{2}+4 m_{N}^{2}}
$$

- We would like to know how to perform such a calculation in order to directly extract the contribution (Green's function) corresponding to a classical rotating string

String cylinder amplitude - flat space

- The string analog of the preceeding setup is a cylinder amplitude
- A calculation in flat space in Euclidean signature (with pointlike boundary conditions) was performed by Cohen, Moore, Nelson, Polchinski

$$
\int_{0}^{\infty} \frac{d s}{s^{13}} \underbrace{e^{4 \pi s} \prod\left(1-e^{-4 \pi n s}\right)^{-24}}_{\text {fluctuation determinant }} \cdot \underbrace{e^{-\frac{(\Delta x)^{2}}{4 \pi s}}}_{e^{-s_{P}(\Delta x)}}
$$

- This expression can be directly rewritten in terms of Green's functions of the intermediate string states

$$
\int_{0}^{\infty} \frac{d s}{s^{13}} \sum_{N=0}^{\infty} d_{N} e^{-4 \pi s m_{N}^{2}} e^{-\frac{(\Delta x)^{2}}{4 \pi s}}=\sum_{N=0}^{\infty} d_{N} \int \frac{d^{26} p}{(2 \pi)^{26}} \frac{e^{i p \Delta x}}{p^{2}+4 m_{N}^{2}}
$$

- We would like to know how to perform such a calculation in order to directly extract the contribution (Green's function) corresponding to a classical rotating string

String cylinder amplitude - puzzles

- A typical flat space rotating string looks like

$$
x^{1}+i x^{2}=a_{1} \sin n_{1} \sigma e^{i n_{1} \tau} \quad \quad x^{3}+i x^{4}=a_{2} \sin n_{2}\left(\sigma+\sigma_{0}\right) e^{i n_{2} \tau}
$$

- First attempt - proceed in Euclidean signature
- Problem: It is not a solution of Euclidean equations of motion!
- The string masses in

came from fluctuation modes - eigenfunctions of the Laplace operator - and not solutions of equations of motion
- This route is closed for generalization to $A d S_{5} \times S^{5}$. There the string action is highly nonlinear and macroscopic spinning strings cannot be considered as small fluctuations!

String cylinder amplitude - puzzles

- A typical flat space rotating string looks like

$$
x^{1}+i x^{2}=a_{1} \sin n_{1} \sigma e^{i n_{1} \tau} \quad x^{3}+i x^{4}=a_{2} \sin n_{2}\left(\sigma+\sigma_{0}\right) e^{i n_{2} \tau}
$$

- First attempt - proceed in Euclidean signature
- Problem: It is not a solution of Euclidean equations of motion!
- The string masses in

came from fluctuation modes - eigenfunctions of the Laplace operator - and not solutions of equations of motion
- This route is closed for generalization to $A d S_{5} \times S^{5}$. There the string action is highly nonlinear and macroscopic spinning strings cannot be considered as small fluctuations!

String cylinder amplitude - puzzles

- A typical flat space rotating string looks like

$$
x^{1}+i x^{2}=a_{1} \sin n_{1} \sigma e^{i n_{1} \tau} \quad x^{3}+i x^{4}=a_{2} \sin n_{2}\left(\sigma+\sigma_{0}\right) e^{i n_{2} \tau}
$$

- First attempt - proceed in Euclidean signature
- Problem: It is not a solution of Euclidean equations of motion!
- The string masses in

came from fluctuation modes - eigenfunctions of the Laplace operator - and not solutions of equations of motion
- This route is closed for generalization to $A d S_{5} \times S^{5}$. There the string action is highly nonlinear and macroscopic spinning strings cannot be considered as small fluctuations!

String cylinder amplitude - puzzles

- A typical flat space rotating string looks like

$$
x^{1}+i x^{2}=a_{1} \sin n_{1} \sigma e^{i n_{1} \tau} \quad x^{3}+i x^{4}=a_{2} \sin n_{2}\left(\sigma+\sigma_{0}\right) e^{i n_{2} \tau}
$$

- First attempt - proceed in Euclidean signature
- Problem: It is not a solution of Euclidean equations of motion!
- The string masses in

came from fluctuation modes - eigenfunctions of the Laplace operator - and not solutions of equations of motion
- This route is closed for generalization to $A d S_{5} \times S^{5}$. There the string action is highly nonlinear and macroscopic spinning strings cannot be considered as small fluctuations!

String cylinder amplitude - puzzles

- A typical flat space rotating string looks like

$$
x^{1}+i x^{2}=a_{1} \sin n_{1} \sigma e^{i n_{1} \tau} \quad x^{3}+i x^{4}=a_{2} \sin n_{2}\left(\sigma+\sigma_{0}\right) e^{i n_{2} \tau}
$$

- First attempt - proceed in Euclidean signature
- Problem: It is not a solution of Euclidean equations of motion!
- The string masses in

$$
\int_{0}^{\infty} \frac{d s}{s^{13}} \underbrace{e^{4 \pi s} \prod\left(1-e^{-4 \pi n s}\right)^{-24}}_{\text {fluctuation determinant }} \cdot \underbrace{e^{-\frac{(\Delta x)^{2}}{4 \pi s}}}_{e^{-s_{P}(\Delta x)}}
$$

came from fluctuation modes - eigenfunctions of the Laplace operator - and not solutions of equations of motion

- This route is closed for generalization to $A d S_{5} \times S^{5}$. There the string action is highly nonlinear and macroscopic spinning strings cannot be considered as small fluctuations!

String cylinder amplitude - puzzles

- A typical flat space rotating string looks like

$$
x^{1}+i x^{2}=a_{1} \sin n_{1} \sigma e^{i n_{1} \tau} \quad x^{3}+i x^{4}=a_{2} \sin n_{2}\left(\sigma+\sigma_{0}\right) e^{i n_{2} \tau}
$$

- First attempt - proceed in Euclidean signature
- Problem: It is not a solution of Euclidean equations of motion!
- The string masses in

$$
\int_{0}^{\infty} \frac{d s}{s^{13}} \underbrace{e^{4 \pi s} \prod\left(1-e^{-4 \pi n s}\right)^{-24}}_{\text {fluctuation determinant }} \cdot \underbrace{e^{-\frac{(\Delta x)^{2}}{4 \pi s}}}_{e^{-S_{P}(\Delta x)}}
$$

came from fluctuation modes - eigenfunctions of the Laplace operator - and not solutions of equations of motion

- This route is closed for generalization to $A d S_{5} \times S^{5}$. There the string action is highly nonlinear and macroscopic spinning strings cannot be considered as small fluctuations!

String cylinder amplitude - puzzles

- Second attempt - proceed in Minkowski signature
- Now it is a solution of equations of motion...
- But we would get an incorrect result - the mass is determined by the string energy and not its classical action!
- How to reconcile this with the standard path integral treatment???

Essentially the same apparent problem appears in ordinary quantum mechanics..

- A state with definite energy evolves in time with the phase factor $e^{-i E T}$. For a classical state $E \sim E_{\text {class }}$ with $E_{\text {class }}$ being the energy of the classical trajectory
- However the contribution of the same classical trajectory to the path integral is given by the action

$$
e^{i S_{\text {class }}\left[x_{i}, x_{f}, T\right]}
$$

- ???

String cylinder amplitude - puzzles

- Second attempt - proceed in Minkowski signature
- Now it is a solution of equations of motion...
- But we would get an incorrect result - the mass is determined by the string energy and not its classical action!
- How to reconcile this with the standard path integral treatment???

Essentially the same apparent problem appears in ordinary quantum mechanics.

- A state with definite energy evolves in time with the phase factor $e^{-i E T}$. For a classical state $E \sim E_{\text {class }}$ with $E_{\text {class }}$ being the energy of the classical trajectory
- However the contribution of the same classical trajectory to the path integral is given by the action

String cylinder amplitude - puzzles

- Second attempt - proceed in Minkowski signature
- Now it is a solution of equations of motion...
- But we would get an incorrect result - the mass is determined by the string energy and not its classical action!
- How to reconcile this with the standard path integral treatment???

Essentially the same apparent problem appears in ordinary quantum mechanics.

- A state with definite energy evolves in time with the phase factor $e^{-i E T}$. For a classical state $E \sim E_{\text {class }}$ with $E_{\text {class }}$ being the energy of the classical trajectory
- However the contribution of the same classical trajectory to the path integral is given by the action

String cylinder amplitude - puzzles

- Second attempt - proceed in Minkowski signature
- Now it is a solution of equations of motion...
- But we would get an incorrect result - the mass is determined by the string energy and not its classical action!
- How to reconcile this with the standard path integral treatment???

Essentially the same apparent problem appears in ordinary quantum mechanics.

- A state with definite energy evolves in time with the phase factor $e^{-i E T}$. For a classical state $E \sim E_{\text {class }}$ with $E_{\text {class }}$ being the energy of the classical trajectory
- However the contribution of the same classical trajectory to the path integral is given by the action

String cylinder amplitude - puzzles

- Second attempt - proceed in Minkowski signature
- Now it is a solution of equations of motion...
- But we would get an incorrect result - the mass is determined by the string energy and not its classical action!
- How to reconcile this with the standard path integral treatment???

Essentially the same apparent problem appears in ordinary quantum mechanics.

- A state with definite energy evolves in time with the phase factor $e^{-i E T}$. For a classical state $E \sim E_{\text {class }}$ with $E_{\text {class }}$ being the energy of the classical trajectory
- However the contribution of the same classical trajectory to the path integral is given by the action

String cylinder amplitude - puzzles

- Second attempt - proceed in Minkowski signature
- Now it is a solution of equations of motion...
- But we would get an incorrect result - the mass is determined by the string energy and not its classical action!
- How to reconcile this with the standard path integral treatment???

Essentially the same apparent problem appears in ordinary quantum mechanics..

- A state with definite energy evolves in time with the phase factor $e^{-i E T}$. For
a classical state $E \sim E_{\text {class }}$ with $E_{\text {class }}$ being the energy of the classical
trajectory
- However the contribution of the same classical trajectory to the path integral is given by the action

String cylinder amplitude - puzzles

- Second attempt - proceed in Minkowski signature
- Now it is a solution of equations of motion...
- But we would get an incorrect result - the mass is determined by the string energy and not its classical action!
- How to reconcile this with the standard path integral treatment???

Essentially the same apparent problem appears in ordinary quantum mechanics..

- A state with definite energy evolves in time with the phase factor $e^{-i E T}$. For a classical state $E \sim E_{\text {class }}$ with $E_{\text {class }}$ being the energy of the classical trajectory
- However the contribution of the same classical trajectory to the path integral is given by the action

String cylinder amplitude - puzzles

- Second attempt - proceed in Minkowski signature
- Now it is a solution of equations of motion...
- But we would get an incorrect result - the mass is determined by the string energy and not its classical action!
- How to reconcile this with the standard path integral treatment???

Essentially the same apparent problem appears in ordinary quantum mechanics..

- A state with definite energy evolves in time with the phase factor $e^{-i E T}$. For a classical state $E \sim E_{\text {class }}$ with $E_{\text {class }}$ being the energy of the classical trajectory
- However the contribution of the same classical trajectory to the path integral is given by the action

$$
e^{i S_{\text {class }}\left[x_{i}, x_{f}, T\right]}
$$

String cylinder amplitude - puzzles

- Second attempt - proceed in Minkowski signature
- Now it is a solution of equations of motion...
- But we would get an incorrect result - the mass is determined by the string energy and not its classical action!
- How to reconcile this with the standard path integral treatment???

Essentially the same apparent problem appears in ordinary quantum mechanics..

- A state with definite energy evolves in time with the phase factor $e^{-i E T}$. For a classical state $E \sim E_{\text {class }}$ with $E_{\text {class }}$ being the energy of the classical trajectory
- However the contribution of the same classical trajectory to the path integral is given by the action

$$
e^{i S_{\text {class }}\left[x_{i}, x_{f}, T\right]}
$$

- ???

Semiclassical propagator revisited

- We have to implement convolution with an initial semi-classical (WKB) wavefunction

$$
\int d x_{i} \Psi\left(x_{i}\right) \cdot e^{i S_{c l a s s}\left[x_{i}, x_{f}, T\right]}=\int d x_{i} e^{i \int^{x_{i}} p(x) d x} \cdot e^{i S_{c l a s s}\left[x_{i}, x_{f}, T\right]}
$$

- Evaluate the x_{i} integral by saddle point

$$
p\left(x_{i}\right)+\frac{\partial S_{c l a s s}\left[x_{i}, x_{f}, T\right]}{\partial x_{i}}=p\left(x_{i}\right)-p=0
$$

which means that the trajectory in the WKB wavefunction and the propagator coincide

Semiclassical propagator revisited

- We have to implement convolution with an initial semi-classical (WKB) wavefunction

$$
\int d x_{i} \Psi\left(x_{i}\right) \cdot e^{i S_{\operatorname{class}}\left[x_{i}, x_{f}, T\right]}=\int d x_{i} e^{i \int^{x_{i}} p(x) d x} \cdot e^{i S_{\operatorname{cass}}\left[x_{i}, x_{f}, T\right]}
$$

- Evaluate the x_{i} integral by saddle point

which means that the trajectory in the WKB wavefunction and the propagator coincide

Semiclassical propagator revisited

- We have to implement convolution with an initial semi-classical (WKB) wavefunction

$$
\int d x_{i} \Psi\left(x_{i}\right) \cdot e^{i S_{c l a s}\left[x_{i}, x_{f}, T\right]}=\int d x_{i} e^{i \int^{x_{i}} p(x) d x} \cdot e^{i S_{\operatorname{class}}\left[x_{i}, x_{f}, T\right]}
$$

- Evaluate the x_{i} integral by saddle point

$$
p\left(x_{i}\right)+\frac{\partial S_{\text {class }}\left[x_{i}, x_{f}, T\right]}{\partial x_{i}}=p\left(x_{i}\right)-p=0
$$

which means that the trajectory in the WKB wavefunction and the propagator coincide

Semiclassical propagator revisited

- We have to implement convolution with an initial semi-classical (WKB) wavefunction

$$
\int d x_{i} \Psi\left(x_{i}\right) \cdot e^{i S_{c l a s}\left[x_{i}, x_{f}, T\right]}=\int d x_{i} e^{i \int^{x_{i}} p(x) d x} \cdot e^{i S_{\operatorname{class}}\left[x_{i}, x_{f}, T\right]}
$$

- Evaluate the x_{i} integral by saddle point

$$
p\left(x_{i}\right)+\frac{\partial S_{\text {class }}\left[x_{i}, x_{f}, T\right]}{\partial x_{i}}=p\left(x_{i}\right)-p=0
$$

which means that the trajectory in the WKB wavefunction and the propagator coincide

Semiclassical propagator revisited

Rewrite

$$
\exp \left\{i \int^{x_{i}} p(x) d x\right\} \cdot \exp \left\{i S_{\text {class }}\left[x_{i}, x_{f}, T\right]\right\}
$$

as

$$
\underbrace{\exp \left\{i S_{\text {class }}\left[x_{i}, x_{f}, T\right]\right\} \cdot \exp \left\{-i \int_{x_{i}}^{x_{f}} p(x) d x\right\}}_{e^{-i E_{\text {class }} T}} \cdot \underbrace{\exp \left\{i \int^{x_{f}} p(x) d x\right\}}_{\Psi\left(x_{f}\right)}
$$

- We will have to include similar projectors on classical wavefunctions when evaluating the cylinder amplitude for the string
- One further subtlety: we should subtract off the zero mode which enters the arguments of the Green's function... (since we want to project only on the oscillatory part of the wavefunction)

Semiclassical propagator revisited

Rewrite

$$
\left.\exp \left\{i \int^{x_{i}} p(x) d x\right\} \cdot \exp \left\{i S_{C_{\text {class }}\left[x_{i}, x_{f}\right.}, T\right]\right\}
$$

- We will have to include similar projectors on classical wavefunctions when evaluating the cylinder amplitude for the string
- One further subtlety: we should subtract off the zero mode which enters the arguments of the Green's function... (since we want to project only on the oscillatory part of the wavefunction)

Semiclassical propagator revisited

Rewrite

$$
\exp \left\{i \int^{x_{i}} p(x) d x\right\} \cdot \exp \left\{i S_{c l a s s}\left[x_{i}, x_{f}, T\right]\right\}
$$

as

$$
\underbrace{\exp \left\{i S_{c l a s s}\left[x_{i}, x_{f}, T\right]\right\} \cdot \exp \left\{-i \int_{x_{i}}^{x_{f}} p(x) d x\right\}}_{e^{-i E_{\text {class }} T}} \cdot \underbrace{\exp \left\{i \int^{x_{f}} p(x) d x\right\}}_{\Psi\left(x_{f}\right)}
$$

- We will have to include similar projectors on classical wavefunctions when evaluating the cylinder amplitude for the string
- One further subtlety: we should subtract off the zero mode which enters the arguments of the Green's function... (since we want to project only on the oscillatory part of the wavefunction)

Semiclassical propagator revisited

Rewrite

$$
\exp \left\{i \int^{x_{i}} p(x) d x\right\} \cdot \exp \left\{i S_{c l a s s}\left[x_{i}, x_{f}, T\right]\right\}
$$

as

$$
\underbrace{\exp \left\{i S_{c l a s s}\left[x_{i}, x_{f}, T\right]\right\} \cdot \exp \left\{-i \int_{x_{i}}^{x_{f}} p(x) d x\right\}}_{e^{-i I_{\text {class }} T}} \cdot \underbrace{\exp \left\{i \int^{x_{f}} p(x) d x\right\}}_{\Psi\left(x_{f}\right)}
$$

- We will have to include similar projectors on classical wavefunctions when evaluating the cylinder amplitude for the string
- One further subtlety: we should subtract off the zero mode which enters the arguments of the Green's function... (since we want to project only on the oscillatory part of the wavefunction)

Semiclassical propagator revisited

Rewrite

$$
\exp \left\{i \int^{x_{i}} p(x) d x\right\} \cdot \exp \left\{i S_{c l a s s}\left[x_{i}, x_{f}, T\right]\right\}
$$

as

$$
\underbrace{\exp \left\{i S_{c l a s s}\left[x_{i}, x_{f}, T\right]\right\} \cdot \exp \left\{-i \int_{x_{i}}^{x_{f}} p(x) d x\right\}}_{e^{-i E_{\text {class }} T}} \cdot \underbrace{\exp \left\{i \int^{x_{f}} p(x) d x\right\}}_{\Psi\left(x_{f}\right)}
$$

- We will have to include similar projectors on classical wavefunctions when evaluating the cylinder amplitude for the string
- One further subtlety: we should subtract off the zero mode which enters the arguments of the Green's function... (since we want to project only on the oscillatory part of the wavefunction)

Prescription for the Green's function of a classical string state

- Compute the cylinder amplitude with modular parameter s by finding a suitable solution of the classical equations of motion
- Implement projection on the wavefunction by the additional factor

$$
\exp \left(i S_{c l a s s}[i n, \text { out }, s]\right) \cdot \exp \left(-i \int d \sigma d \tau\left(\pi-\pi_{0}\right) \cdot\left(\dot{x}-\dot{x}_{0}\right)\right)
$$

where π_{0} and \dot{x}_{0} are the zero mode parts of the canonical momentum and velocity i.e.

$$
\pi_{0}(\tau) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \sigma \pi(\tau, \sigma) \quad \dot{x}_{0}(\tau) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \sigma \dot{x}(\tau, \sigma)
$$

- Finally, extremize w.r.t. the modular parameter s

Prescription for the Green's function of a classical string state

- Compute the cylinder amplitude with modular parameter s by finding a suitable solution of the classical equations of motion
- Implement projection on the wavefunction by the additional factor

where π_{0} and \dot{x}_{0} are the zero mode parts of the canonical momentum and velocity i.e.

- Finally, extremize w.r.t. the modular parameter s

Prescription for the Green's function of a classical string state

- Compute the cylinder amplitude with modular parameter s by finding a suitable solution of the classical equations of motion
- Implement projection on the wavefunction by the additional factor

$$
\exp \left(i S_{c l a s s}[i n, \text { out }, s]\right) \cdot \exp \left(-i \int d \sigma d \tau\left(\pi-\pi_{0}\right) \cdot\left(\dot{x}-\dot{x}_{0}\right)\right)
$$

where π_{0} and \dot{x}_{0} are the zero mode parts of the canonical momentum and velocity i.e.

- Finally, extremize w.r.t. the modular parameter s

Prescription for the Green's function of a classical string state

- Compute the cylinder amplitude with modular parameter s by finding a suitable solution of the classical equations of motion
- Implement projection on the wavefunction by the additional factor

$$
\exp \left(i S_{\text {class }}[\text { in, out, s] }) \cdot \exp \left(-i \int d \sigma d \tau\left(\pi-\pi_{0}\right) \cdot\left(\dot{x}-\dot{x}_{0}\right)\right)\right.
$$

where π_{0} and \dot{x}_{0} are the zero mode parts of the canonical momentum and velocity i.e.

$$
\pi_{0}(\tau) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \sigma \pi(\tau, \sigma) \quad \dot{x}_{0}(\tau) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \sigma \dot{x}(\tau, \sigma)
$$

- Finally, extremize w.r.t. the modular parameter s

Prescription for the Green's function of a classical string state

- Compute the cylinder amplitude with modular parameter s by finding a suitable solution of the classical equations of motion
- Implement projection on the wavefunction by the additional factor

$$
\exp \left(i S_{\text {class }}[\text { in, out, s] }) \cdot \exp \left(-i \int d \sigma d \tau\left(\pi-\pi_{0}\right) \cdot\left(\dot{x}-\dot{x}_{0}\right)\right)\right.
$$

where π_{0} and \dot{x}_{0} are the zero mode parts of the canonical momentum and velocity i.e.

$$
\pi_{0}(\tau) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \sigma \pi(\tau, \sigma) \quad \dot{x}_{0}(\tau) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \sigma \dot{x}(\tau, \sigma)
$$

- Finally, extremize w.r.t. the modular parameter s

Rotating string in S^{5}

- The Polyakov action for a cylinder takes the form

$$
S_{p}=-\frac{\sqrt{\lambda}}{4 \pi} \int_{-\frac{s}{2}}^{\frac{s}{2}} d \tau \int_{0}^{2 \pi} d \sigma\left\{-\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}+S^{5} \text { part }\right\}
$$

- The classical solution for $x(\tau), z(\tau)$ will be as for the point particle described earlier with the S^{5} part identical to a conventional spinning string
- Evaluating the action for the simplest circular string in S^{5} and implementing the wavefunction projectors yields

Rotating string in S^{5}

- The Polyakov action for a cylinder takes the form

$$
S_{P}=-\frac{\sqrt{\lambda}}{4 \pi} \int_{-\frac{s}{2}}^{\frac{s}{2}} d \tau \int_{0}^{2 \pi} d \sigma\left\{-\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}+S^{5} \text { part }\right\}
$$

- The classical solution for $x(\tau), z(\tau)$ will be as for the point particle described earlier with the S^{5} part identical to a conventional spinning string
- Evaluating the action for the simplest circular string in S^{5} and implementing the wavefunction projectors yields

Rotating string in S^{5}

- The Polyakov action for a cylinder takes the form

$$
S_{P}=-\frac{\sqrt{\lambda}}{4 \pi} \int_{-\frac{s}{2}}^{\frac{s}{2}} d \tau \int_{0}^{2 \pi} d \sigma\left\{-\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}+S^{5} \text { part }\right\}
$$

- The classical solution for $x(\tau), z(\tau)$ will be as for the point particle described earlier with the S^{5} part identical to a conventional spinning string
- Evaluating the action for the simplest circular string in S^{5} and implementing the wavefunction projectors yields

Rotating string in S^{5}

- The Polyakov action for a cylinder takes the form

$$
S_{P}=-\frac{\sqrt{\lambda}}{4 \pi} \int_{-\frac{5}{2}}^{\frac{s}{2}} d \tau \int_{0}^{2 \pi} d \sigma\left\{-\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}+S^{5} \text { part }\right\}
$$

- The classical solution for $x(\tau), z(\tau)$ will be as for the point particle described earlier with the S^{5} part identical to a conventional spinning string
- Evaluating the action for the simplest circular string in S^{5} and implementing the wavefunction projectors yields

Rotating string in S^{5}

- The Polyakov action for a cylinder takes the form

$$
S_{P}=-\frac{\sqrt{\lambda}}{4 \pi} \int_{-\frac{s}{2}}^{\frac{s}{2}} d \tau \int_{0}^{2 \pi} d \sigma\left\{-\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}+S^{5} \mathrm{part}\right\}
$$

- The classical solution for $x(\tau), z(\tau)$ will be as for the point particle described earlier with the S^{5} part identical to a conventional spinning string
- Evaluating the action for the simplest circular string in S^{5} and implementing the wavefunction projectors yields

$$
\exp \{i \frac{\sqrt{\lambda}}{2}(\kappa^{2}+\underbrace{\left(\omega^{2}-1\right)}_{s^{5} \text { action }}) s\} \longrightarrow \exp \{i \frac{\sqrt{\lambda}}{2}(\kappa^{2}-\underbrace{\left(\omega^{2}+1\right)}_{s^{5} \text { energy }}) s\}
$$

Rotating string in S^{5}

- Substituting the value of κ we get

$$
\exp \left\{i \frac{\sqrt{\lambda}}{2}\left(\frac{4}{s^{2}} \log ^{2} \frac{x}{\varepsilon}-\left(\omega^{2}+1\right)\right) s\right\}
$$

- Finally extremizing w.r.t. the modular parameter gives the correct two point function

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \sqrt{\lambda} \sqrt{1+4 j^{2}}}}
$$

- For strings rotating in S^{5} it is clear that one always gets the correct answer (after finishing the paper, we learned that in this case a very similar construction was done by [Tsuji])
- More subtleties appear when strings also rotate in $A d S_{5} \ldots$

Rotating string in S^{5}

- Substituting the value of κ we get

$$
\exp \left\{i \frac{\sqrt{\lambda}}{2}\left(\frac{4}{s^{2}} \log ^{2} \frac{x}{\varepsilon}-\left(\omega^{2}+1\right)\right) s\right\}
$$

- Finally extremizing w.r.t. the modular parameter gives the correct two point function

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \sqrt{\lambda}} \sqrt{1+4 j^{2}}}
$$

- For strings rotating in S^{5} it is clear that one always gets the correct answer (after finishing the paper, we learned that in this case a very similar construction was done by [Tsuji])
- More subtleties appear when strings also rotate in $A d S_{5} \ldots$

Rotating string in S^{5}

- Substituting the value of κ we get

$$
\exp \left\{i \frac{\sqrt{\lambda}}{2}\left(\frac{4}{s^{2}} \log ^{2} \frac{x}{\varepsilon}-\left(\omega^{2}+1\right)\right) s\right\}
$$

- Finally extremizing w.r.t. the modular parameter gives the correct two point function

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \sqrt{\lambda} \sqrt{1+4 j^{2}}}}
$$

- For strings rotating in S^{5} it is clear that one always gets the correct answer (after finishing the paper, we learned that in this case a very similar construction was done by [Tsuji])
- More subtleties appear when strings also rotate in $\operatorname{AdS} S_{5}$

Rotating string in S^{5}

- Substituting the value of κ we get

$$
\exp \left\{i \frac{\sqrt{\lambda}}{2}\left(\frac{4}{s^{2}} \log ^{2} \frac{x}{\varepsilon}-\left(\omega^{2}+1\right)\right) s\right\}
$$

- Finally extremizing w.r.t. the modular parameter gives the correct two point function

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \sqrt{\lambda} \sqrt{1+4 j^{2}}}}
$$

- For strings rotating in S^{5} it is clear that one always gets the correct answer (after finishing the paper, we learned that in this case a very similar construction was done by [Tsuji])
- More subtleties appear when strings also rotate in $\operatorname{AdS} S_{5}$

Rotating string in S^{5}

- Substituting the value of κ we get

$$
\exp \left\{i \frac{\sqrt{\lambda}}{2}\left(\frac{4}{s^{2}} \log ^{2} \frac{x}{\varepsilon}-\left(\omega^{2}+1\right)\right) s\right\}
$$

- Finally extremizing w.r.t. the modular parameter gives the correct two point function

$$
\langle O(0) O(x)\rangle=\frac{1}{|x|^{2 \sqrt{\lambda} \sqrt{1+4 j^{2}}}}
$$

- For strings rotating in S^{5} it is clear that one always gets the correct answer (after finishing the paper, we learned that in this case a very similar construction was done by [Tsuji])
- More subtleties appear when strings also rotate in $\operatorname{AdS} S_{5} \ldots$

Rotating strings in $A d S_{5}$

- Here we face a couple of difficulties...
- The rotation of the string interferes with the bending of the string necessary for the classical solution to approach two given points on the boundary
- A-priori it seems to be difficult to find such solutions...
- Fortunately, there is a sequence of transformations for generating any such solution starting from the original rotating string...

Rotating strings in $A d S_{5}$

- Here we face a couple of difficulties...
- The rotation of the string interferes with the bending of the string necessary for the classical solution to approach two given points on the boundary
- A-priori it seems to be difficult to find such solutions..
- Fortunately, there is a sequence of transformations for generating any such solution starting from the original rotating string...

Rotating strings in $A d S_{5}$

- Here we face a couple of difficulties...
- The rotation of the string interferes with the bending of the string necessary for the classical solution to approach two given points on the boundary
- A-priori it seems to be difficult to find such solutions...
- Fortunately, there is a sequence of transformations for generating any such solution starting from the original rotating string.

Rotating strings in $A d S_{5}$

- Here we face a couple of difficulties...
- The rotation of the string interferes with the bending of the string necessary for the classical solution to approach two given points on the boundary
- A-priori it seems to be difficult to find such solutions...
- Fortunately, there is a sequence of transformations for generating any such solution starting from the original rotating string...

Rotating strings in $A d S_{5}$

Original spinning string in the center of $A d S_{5}$

In global ('embedding') coordinates:

$$
\begin{aligned}
& Y_{0} \propto \sin \kappa t \\
& Y_{i}=\cdots \\
& Y_{5} \propto \cos \kappa t
\end{aligned}
$$

Rotating strings in $A d S_{5}$

A spinning string emanating from the boundary and propagating into the bulk
Substitute:

$$
Y_{0} \leftrightarrow i Y_{4} \quad \kappa \rightarrow i \kappa
$$

this exchanges

$$
i D \leftrightarrow \frac{1}{2}\left(P_{0}+K_{0}\right)
$$

As a result

$$
z=e^{k t}
$$

Rotating strings in AdS_{5}

A spinning string approaching two given points on the boundary

Perform a special conformal

 transformation

Rotating strings in $A d S_{5}$

A spinning string approaching two given points on the boundary
Perform a special conformal transformation

$$
\begin{aligned}
x^{\mu} & \rightarrow \frac{x^{\mu}+b^{\mu}\left(x^{2}+z^{2}\right)}{1+2 x b+b^{2}\left(x^{2}+z^{2}\right)} \\
z & \rightarrow \frac{z}{1+2 x b+b^{2}\left(x^{2}+z^{2}\right)}
\end{aligned}
$$

Rotating strings in $A d S_{5}$

A spinning string approaching two given points on the boundary
Perform a special conformal transformation

$$
\begin{aligned}
x^{\mu} & \rightarrow \frac{x^{\mu}+b^{\mu}\left(x^{2}+z^{2}\right)}{1+2 x b+b^{2}\left(x^{2}+z^{2}\right)} \\
z & \rightarrow \frac{z}{1+2 x b+b^{2}\left(x^{2}+z^{2}\right)}
\end{aligned}
$$

AdS boundary

Rotating strings in AdS_{5}

- Since the string motion is in the same space as the arguments of the correlation function, one has to decouple the zero mode recall

- However in curved spacetime this notion is ambiguous and depends on the coordinate system!
- We found that one natural choice exists which is compatible with the so $(2,4)$ symmetry of $A d S_{5}$

- We use the Y_{A} coordinates to define the zero modes
- With these choices, we found for a couple of examples that one recovers the correct two point correlation functions

Rotating strings in AdS_{5}

- Since the string motion is in the same space as the arguments of the correlation function, one has to decouple the zero mode recall

$$
\exp \left(i S_{\text {class }}[i n, \text { out }, s]\right) \cdot \exp \left(-i \int d \sigma d \tau\left(\pi-\pi_{0}\right) \cdot\left(\dot{x}-\dot{x}_{0}\right)\right)
$$

- However in curved spacetime this notion is ambiguous and depends on the coordinate system!
- We found that one natural choice exists which is compatible with the so $(2,4)$ symmetry of AdS_{5}

- We use the Y_{A} coordinates to define the zero modes
- With these choices, we found for a couple of examples that one recovers the correct two point correlation functions

Rotating strings in $A d S_{5}$

- Since the string motion is in the same space as the arguments of the correlation function, one has to decouple the zero mode recall

$$
\exp \left(i S_{c l a s s}[i n, \text { out }, s]\right) \cdot \exp \left(-i \int d \sigma d \tau\left(\pi-\pi_{0}\right) \cdot\left(\dot{x}-\dot{x}_{0}\right)\right)
$$

- However in curved spacetime this notion is ambiguous and depends on the coordinate system!
- We found that one natural choice exists which is compatible with the so $(2,4)$ symmetry of $A d S_{5}$
- We use the Y_{A} coordinates to define the zero modes
- With these choices, we found for a couple of examples that one recovers the correct two point correlation functions

Rotating strings in AdS_{5}

- Since the string motion is in the same space as the arguments of the correlation function, one has to decouple the zero mode recall

$$
\exp \left(i S_{c l a s s}[i n, \text { out }, s]\right) \cdot \exp \left(-i \int d \sigma d \tau\left(\pi-\pi_{0}\right) \cdot\left(\dot{x}-\dot{x}_{0}\right)\right)
$$

- However in curved spacetime this notion is ambiguous and depends on the coordinate system!
- We found that one natural choice exists which is compatible with the so $(2,4)$ symmetry of $A d S_{5}$:
- We use the Y_{A} coordinates to define the zero modes
- With these choices, we found for a couple of examples that one recovers the correct two point correlation functions

Rotating strings in $A d S_{5}$

- Since the string motion is in the same space as the arguments of the correlation function, one has to decouple the zero mode recall

$$
\exp \left(i S_{c l a s s}[i n, \text { out }, s]\right) \cdot \exp \left(-i \int d \sigma d \tau\left(\pi-\pi_{0}\right) \cdot\left(\dot{x}-\dot{x}_{0}\right)\right)
$$

- However in curved spacetime this notion is ambiguous and depends on the coordinate system!
- We found that one natural choice exists which is compatible with the $s o(2,4)$ symmetry of $A d S_{5}$:

$$
-Y_{0}^{2}+Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}-Y_{5}^{2}=-1
$$

- We use the Y_{A} coordinates to define the zero modes
- With these choices, we found for a couple of examples that one recovers the correct two point correlation functions

Rotating strings in AdS_{5}

- Since the string motion is in the same space as the arguments of the correlation function, one has to decouple the zero mode recall

$$
\exp \left(i S_{c l a s s}[i n, \text { out }, s]\right) \cdot \exp \left(-i \int d \sigma d \tau\left(\pi-\pi_{0}\right) \cdot\left(\dot{x}-\dot{x}_{0}\right)\right)
$$

- However in curved spacetime this notion is ambiguous and depends on the coordinate system!
- We found that one natural choice exists which is compatible with the $s o(2,4)$ symmetry of $A d S_{5}$:

$$
-Y_{0}^{2}+Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}-Y_{5}^{2}=-1
$$

- We use the Y_{A} coordinates to define the zero modes
- With these choices, we found for a couple of examples that one recovers the correct two point correlation functions

Rotating strings in AdS_{5}

- Since the string motion is in the same space as the arguments of the correlation function, one has to decouple the zero mode recall

$$
\exp \left(i S_{c l a s s}[i n, \text { out }, s]\right) \cdot \exp \left(-i \int d \sigma d \tau\left(\pi-\pi_{0}\right) \cdot\left(\dot{x}-\dot{x}_{0}\right)\right)
$$

- However in curved spacetime this notion is ambiguous and depends on the coordinate system!
- We found that one natural choice exists which is compatible with the so $(2,4)$ symmetry of $A d S_{5}$:

$$
-Y_{0}^{2}+Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}-Y_{5}^{2}=-1
$$

- We use the Y_{A} coordinates to define the zero modes
- With these choices, we found for a couple of examples that one recovers the correct two point correlation functions

Three point correlation functions

- The main point of the two point correlation function computation was to define how does the string solution look like close to the operator insertion point
- We obtain a formulation of a three point correlation function:
- a classical solution with the topology of a punctured sphere
- the asymptotics close to each puncture can be read off from the two point correlation function computation
- Moreover one has to deal with the wavefunction projectors
- Still a very difficult (but interesting) problem...
see talks by A. Tseytlin, M. Costa; recent paper by K. Zarembo

Three point correlation functions

- The main point of the two point correlation function computation was to define how does the string solution look like close to the operator insertion point
- We obtain a formulation of a three point correlation function
- a classical solution with the topology of a punctured sphere
- the asymptotics close to each puncture can be read off from the two point correlation function computation
- Moreover one has to deal with the wavefunction projectors
- Still a very difficult (but interesting) problem.

Three point correlation functions

- The main point of the two point correlation function computation was to define how does the string solution look like close to the operator insertion point
> - We obtain a formulation of a three point correlation function:
> - a classical solution with the topology of a punctured sphere
> - the asymptotics close to each puncture can be read off from the two point correlation function computation
> - Moreover one has to deal with the wavefunction projectors
- Still a very difficult (but interesting) problem.

Three point correlation functions

- The main point of the two point correlation function computation was to define how does the string solution look like close to the operator insertion point
- We obtain a formulation of a three point correlation function:
- a classical solution with the topology of a punctured sphere
- the asymptotics close to each puncture can be read off from the two point correlation function computation
- Moreover one has to deal with the wavefunction projectors
- Still a very difficult (but interesting) problem.

Three point correlation functions

- The main point of the two point correlation function computation was to define how does the string solution look like close to the operator insertion point
- We obtain a formulation of a three point correlation function:
- a classical solution with the topology of a punctured sphere
- the asymptotics close to each puncture can be read off from the two point correlation function computation
- Moreover one has to deal with the wavefunction projectors
- Still a very difficult (but interesting) problem.

Three point correlation functions

- The main point of the two point correlation function computation was to define how does the string solution look like close to the operator insertion point
- We obtain a formulation of a three point correlation function:
- a classical solution with the topology of a punctured sphere
- the asymptotics close to each puncture can be read off from the two point correlation function computation
- Moreover one has to deal with the wavefunction projectors
- Still a very difficult (but interesting) problem.

Three point correlation functions

- The main point of the two point correlation function computation was to define how does the string solution look like close to the operator insertion point
- We obtain a formulation of a three point correlation function:
- a classical solution with the topology of a punctured sphere
- the asymptotics close to each puncture can be read off from the two point correlation function computation
- Moreover one has to deal with the wavefunction projectors
- Still a very difficult (but interesting) problem

Three point correlation functions

- The main point of the two point correlation function computation was to define how does the string solution look like close to the operator insertion point
- We obtain a formulation of a three point correlation function:
- a classical solution with the topology of a punctured sphere
- the asymptotics close to each puncture can be read off from the two point correlation function computation
- Moreover one has to deal with the wavefunction projectors
- Still a very difficult (but interesting) problem...
see talks by A. Tseytlin, M. Costa; recent paper by K. Zarembo

Summary

- We have found how to directly reproduce two point correlation functions of operators dual to classical spinning string state using a classical string computations
- The key ingredients were
i) a projection onto the wavefunction
ii) a subtraction of zero modes in a way which respects so $(2,4)$ symmetry

Summary

- We have found how to directly reproduce two point correlation functions of operators dual to classical spinning string state using a classical string computations
- The key ingredients were
i) a projection onto the wavefunction
ii) a subtraction of zero modes in a way which respects so $(2,4)$ symmetry

Summary

- We have found how to directly reproduce two point correlation functions of operators dual to classical spinning string state using a classical string computations
- The key ingredients were
i) a projection onto the wavefunction
ii) a subtraction of zero modes in a way which respects so $(2,4)$ symmetry

Summary

- We have found how to directly reproduce two point correlation functions of operators dual to classical spinning string state using a classical string computations
- The key ingredients were
i) a projection onto the wavefunction
ii) a subtraction of zero modes in a way which respects so $(2,4)$ symmetry

Summary

- We have found how to directly reproduce two point correlation functions of operators dual to classical spinning string state using a classical string computations
- The key ingredients were
i) a projection onto the wavefunction
ii) a subtraction of zero modes in a way which respects so $(2,4)$ symmetry

Outlook

- Numerous open problems
- Issues of the existence of a solution relevant for the three point function with given external operators
- Interrelations with the integrability of the classical string in $A d S_{5} \times S^{5}$
- Analog of the algebraic curve construction of spinning strings??
- More generally - investigate integrable quantum field theories on various Riemann surfaces:
- Cylinder - the spectrum
- Disc (or plane) - Wilson loops/scattering amplitudes
- Punctured sphere - Correlation functions
- Higher genus - $1 / N$ corrections (?)

Outlook

- Numerous open problems
- Issues of the existence of a solution relevant for the three point function with given external operators
- Interrelations with the integrability of the classical string in $\operatorname{AdS}_{5} \times S^{5}$
- Analog of the algebraic curve construction of spinning strings??
- More generally - investigate integrable quantum field theories on various Riemann surfaces:
- Cylinder - the spectrum
- Disc (or plane) - Wilson loops/scattering amplitudes
- Punctured sphere - Correlation functions
- Higher genus - $1 / \mathrm{N}$ corrections (?)

Outlook

- Numerous open problems
- Issues of the existence of a solution relevant for the three point function with given external operators
- Interrelations with the integrability of the classical string in $\operatorname{AdS}_{5} \times S^{5}$
- Analog of the algebraic curve construction of spinning strings??
- More generally - investigate integrable quantum field theories on various Riemann surfaces:
- Cylinder - the spectrum
- Disc (or plane) - Wilson loops/scattering amplitudes
- Punctured sphere - Correlation functions
- Higher genus - $1 / N$ corrections (?)

Outlook

- Numerous open problems
- Issues of the existence of a solution relevant for the three point function with given external operators
- Interrelations with the integrability of the classical string in $A d S_{5} \times S^{5}$
- Analog of the algebraic curve construction of spinning strings??
- More generally - investigate integrable quantum field theories on various Riemann surfaces:
- Cylinder - the spectrum
- Disc (or plane) - Wilson loops/scattering amplitudes
- Punctured sphere - Correlation functions
- Higher genus - 1/N corrections (?)

Outlook

- Numerous open problems
- Issues of the existence of a solution relevant for the three point function with given external operators
- Interrelations with the integrability of the classical string in $A d S_{5} \times S^{5}$
- Analog of the algebraic curve construction of spinning strings??
- More generally - investigate integrable quantum field theories on various Riemann surfaces:
- Cylinder - the spectrum
- Disc (or plane) - Wilson loops/scattering amplitudes
- Punctured sphere - Correlation functions
- Higher genus - $1 / N$ corrections (?)

Outlook

- Numerous open problems
- Issues of the existence of a solution relevant for the three point function with given external operators
- Interrelations with the integrability of the classical string in $A d S_{5} \times S^{5}$
- Analog of the algebraic curve construction of spinning strings??
- More generally - investigate integrable quantum field theories on various Riemann surfaces:
- Cylinder - the spectrum
- Disc (or plane) - Wilson loops/scattering amplitudes
- Punctured sphere - Correlation functions
- Higher genus - 1/N corrections (?)

Outlook

- Numerous open problems
- Issues of the existence of a solution relevant for the three point function with given external operators
- Interrelations with the integrability of the classical string in $\operatorname{AdS}_{5} \times S^{5}$
- Analog of the algebraic curve construction of spinning strings??
- More generally - investigate integrable quantum field theories on various Riemann surfaces:
- Cylinder - the spectrum
- Disc (or plane) - Wilson loops/scattering amplitudes
- Punctured sphere - Correlation functions
- Higher genus - $1 / N$ corrections (?)

Outlook

- Numerous open problems
- Issues of the existence of a solution relevant for the three point function with given external operators
- Interrelations with the integrability of the classical string in $A d S_{5} \times S^{5}$
- Analog of the algebraic curve construction of spinning strings??
- More generally - investigate integrable quantum field theories on various Riemann surfaces:
- Cylinder - the spectrum
- Disc (or plane) - Wilson loops/scattering amplitudes
- Punctured sphere - Correlation functions
- Higher genus - $1 / N$ corrections (?)

Outlook

- Numerous open problems
- Issues of the existence of a solution relevant for the three point function with given external operators
- Interrelations with the integrability of the classical string in $A d S_{5} \times S^{5}$
- Analog of the algebraic curve construction of spinning strings??
- More generally - investigate integrable quantum field theories on various Riemann surfaces:
- Cylinder - the spectrum
- Disc (or plane) - Wilson loops/scattering amplitudes
- Punctured sphere - Correlation functions
- Higher genus - 1/N corrections (?)

Outlook

- Numerous open problems
- Issues of the existence of a solution relevant for the three point function with given external operators
- Interrelations with the integrability of the classical string in $A d S_{5} \times S^{5}$
- Analog of the algebraic curve construction of spinning strings??
- More generally - investigate integrable quantum field theories on various Riemann surfaces:
- Cylinder - the spectrum
- Disc (or plane) - Wilson loops/scattering amplitudes
- Punctured sphere - Correlation functions
- Higher genus - $1 / N$ corrections (?)

