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Motivation

How can one

take the large N limit of hermitian three-algebra?

deconstruct non-Abelian M5 from ABJM?

see the M3/2 scaling in ABJM?

see the SO(8) R symmetry in ABJM?

see the S3 vacuum in mass deformed ABJM?
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ABJM theory

Hermitian three-algebra

[T a, T b; T c] = f ab
cd T d

describes all ABJM theories.

The three-bracket is complex anti-linear in its third entry, meaning that

[T a, T b;λT c] = λ∗[T a, T b; T c].

The three-bracket takes three elements T a, T b and T c and map these
to another element in the algebra.

Hermitian three-algebra is characterized by fundamental identity which
says that [•, T a; T b] is a derivation, and by trace invariance

〈
[T a, T b; T c], T d

〉
−

〈
T a, [T d , T c ; T b]

〉
= 0.
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ABJM theory

The Bagger-Lambert formulation of ABJM in which the gauge field is
expressed as

Ãb
a = Ad

c f bc
da

can be used only for SU(N) × SU(N) gauge group.

To extend the Bagger-Lambert formulation we shall define gauge field
as

Ãb
a = Ad

cf bc
da − iAieiδ

b
a .

We decompose three-algebra structure constants in trace-less and
trace-part

f bc
da = f̃ bc

da + λδb
aδc

d
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ABJM theory

Here λ is fixed by demanding anti-symmetry

f bc
da = −f cb

da.

The U(1)i Chern-Simons levels ki are constrained by

2π
∑

i

1
ki

= λ.

These constraints result in the following gauge groups and levels:

U(N)k × U(M)−k ,
Sp(N)k × U(1)−2k ,

SU(N)k × SU(N)−k .

These gauge groups correspond to hermitian three-algebras with
generators T a which have unit trace form, complex anti-linear in its
second entry,

〈
T a, T b

〉
= δa

b .
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ABJM theory

Can we get more gauge groups by including null-generators NA in the
the three-algebra? These have trace forms

〈
NA, T a

〉
= 0,

〈
NA, NB

〉
= 0.

The answer is no. It is true that trace invariance puts no restriction on

f •••A

but it restricts

f A•
•• = f ••A• = 0.

The null generators are invisible in the Lagrangian. Also it is still true
that f ab

cd satisfy the same hermitian fundamental identity as in the
absense of null generators.
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Star-product

Multiplication of functions is associative, but commutative. However we
can deform it to a non-commutative star-product

F ∗ G = lim
σ→σ′

exp
(

i~
2
√

gǫαβ∂α∂′
β

)
F(σ)G(σ′).

To linear order in non-commutativity parameter ~ we have

F ∗ G = FG +
i~
2
{F ,G} + O(~2)

and we get

(F ∗ G) ∗ H = FGH +
i~
2
{F ,G}H +

i~
2
{FG,H} + O(~2)

= FGH +
i~
2

({F ,G}H + {F ,H}G + {G,H}F) + O(~2).
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Star-product

The result treats F ,G,H on the same footing and indeed the
star-product is associative

(F ∗ G) ∗ H = F ∗ (G ∗ H).

Associativity implies that the star-commutator [F ,G] = F ∗ G − G ∗ F
satisfies the Jacobi identity.

The important thing with the star-product is that it can be used to
realize finite-dimensional Lie algebras.

One important example is the fuzzy two-torus.
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Star-product

On a two-torus we have two periodic functions

U = eiσ1
,

V = eiσ2

Since

[σ1, σ2] = σ1 ∗ σ2 − σ2 ∗ σ1 = i ~̃

where

~̃ = ~
√

gǫ12.

we get, using the BCH formula,

U ∗ V = ei~̃V ∗ U .

We define

T m1m2 = Um1 ∗ Vm2 .
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Star-product

which form a Lie algebra

[T m1m2 ,T n1n2 ] =
(

e−i~̃m1n2 − e−i~̃n1m2

)
T m1+n1,m2+n2

For irrational ~̃ we have infinite dimensional Lie algebras. For

~̃ =
2π

N

the structure constants are invariant under mα → mα + N. Thus we
can make a consistent finite truncation of three-algebra generators T m

and only keep those with (α = 1, 2)

mα = 0, ..., N − 1.

We can then isomorphically map the functions into matrices of size
N × N

U → U,
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Star-product

V → V

where one choice is

U =




0 1 0 0
0 0 1 0

. . .
1 0 0 0


 ,

V =




1 0 0

0 ei~̃ 0
. . .

0 0 ei(N−1)~̃




.

These matrices are unitary,

U† = U−1,
V † = V−1.
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Star-product

and obey

UN = 1,
V N = 1,

UV = ei~̃VU.

The N2 different monomials

T m1m2 = Um1V m2

generate U(N) Lie algebra

[T m1m2 , T n1n2 ] =
(

e−i~̃m1n2 − e−i~̃n1m2

)
T m+n.

We can not realize the algebra

[σ1, σ2] =
2πi
N
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Star-product

by finite size matrices.

In the limit N → ∞ we get a commutative torus

[σ1, σ2] = 0.
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Star-three-product

Defining the three-commutator

[A, B; C] = AC†B − BC†A

we get

[[A, B; C], D; E ] − [[A, D; E ], B; C] − [A, [B, D; E ]; C] + [A, B, [C, E ; D]]
= (AC†B)E†D − AC†(BE†D) + ...

Only if we have associativity

(AC†B)E†D = A(C†BE†)D = AC†(BE†D)

we have the fundamental identity.

The first attempt to define a star-three-product would be

F ∗ G ∗ H = FGH +
~

2
{F ,G,H} + O(~2)
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Star-three-product

but this gives

(F ∗ G ∗ H) ∗ K ∗ L = FGHKL
+

~

2
({F ,G,H}KL + {FGH,K,L}) + O(~2)

and F ,G,H,K,L does not appear symmetrically like in the
star-product.

When extending the star-product to a star-three-product it is natural to
demand this result to be symmetric in F ,G,H,K,L. We extend the
ansatz and include additional terms on the form

F ∗ G ∗ H = FGH
+

~

2
({F ,G,H} + aH{F ,G, •} + bF{G,H, •} + cG{H,F , •})

+ O(~2)
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Star-three-product

Associativity determines the three coefficients a, b, c uniquely

a = −1,
b = −1,
c = 1.

The odd sign of the last coefficient c seems to reflect the fact that the
natural product to consider is always F ∗ Ḡ ∗ H where Ḡ denotes
complex conjugate.

For matrices this corresponds to FG†H. Indeed for M × N matrices it
makes no sense to consider FGH.
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Three-algebra and star-three-product

With a star-three-product we can generalize to a fuzzy three-torus.
Again we get a finite-dimensional Lie-three-algebra due to periodic
structure constants, invariant under mα → mα + N if we choose

~ =
4π

N

which means that we can consider a consistent finite truncation

mα = 0, ...., N − 1.

The three-algebra reads,

[T m,T n;T p] = T m+n−p
(

e
i~
2 {m,n,p}e

~

2 ({n,p,•}−{m,p,•}+{m,n,•})

−e− i~
2 {m,n,p}e− ~

2 ({n,p,•}−{m,p,•}+{m,n,•})
)

Structure constants are differential operators. The matter fields belong
to gauge orbits which are defined as gauge variations of the
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Three-algebra and star-three-product

representative XmT m. Along this gauge orbit, matter fields may involve
a differential operator part, but in each gauge orbit we can, by
definition, always find one representative (on the form XmT m) that
does not involve differential operators.

We define the gauge invariant inner product as

〈X , Y 〉 =

∫
d3σ

(2π)3 (X · 1)(Y · 1),

killing any derivatives before integration. Alternatively we consider total
derivatives. Either way, derivatives do not contribute to the inner
product.
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Degrees of freedom

Classical moduli space are field configurations for which the sextic
potential = 0,

M = {T ~m|[T ~m,T ~n;T ~p] = 0 for any ~m, ~n, ~p ∈ M}

This in turn implies

(~m × ~n) · ~p = 0.

This means that all vectors ~m must lie in a two-dimensional plane in
R

3. Taking this plane to be spanned by two coordinate axes we get

dim(M) = N2.

The number of three-algebra generators is N3 =dim(M)2/3.

dim(M) is independent of how we choose the plane. For example take
a periodic lattice of points (m1, m2) where mα = 0, 1, 2, 3 = N − 1.
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Degrees of freedom

Thus N = 4. Let us take a line starting at the point (0, 0) and going
through the point (2, 3). If we count modulo 4 we now find along this
line the following set of points (0, 0), (2, 3), (0, 2), (2, 1), (0, 0). And
from here it repeats itself. The line then goes through four different
points. That coincides with the number N in this example.
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Connection with usual ABJM

In any three-algebra of the type above we can always find a
sub-three-algebra by taking m3 = 1. That is, we consider generators

T m1m21.

This gives a sub-three-algebra because the three-bracket involves
products like T m ∗ Tp ∗ T n ∝ T m−p+n and the simple fact that

1 − 1 + 1 = 1.

The fuzzy three-torus reduces to a fuzzy two-torus and we obtain
ABJM theory with gauge group U(N) × U(N).
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Abelian M5

An M5 in a background C field is described by the Lagrangian density

L =
1

8π

(
−1

2
H ∧ ∗H + H ∧ C

)

plus contributions from the other fields. In this convention we have
∫

dB ∈ 2πZ

Once that convention is fixed, the coupling constant 1
8π is also fixed, by

selfduality. Here

H = dB + C

This construction is made such that only the selfdual part couples to C,

L =
1

8π

(
−1

2
|dB|2 − dB ∧ (C + ∗C) − 1

2
|C|2

)
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Abelian M5

The action is given by
∫

d3xd3σ
√

gL

Since the theory is supersymmetric, we can not add any further
constant to the Lagrangian.

How can we obtain the
√

g in the measure by deconstruction from
ABJM if we have no metric on the auxiliary three-manifold on
which we define the star-three-product?

How can we obtain the coupling constant 1
8π from ABJM?

How can we get a background C-field from ABJM?
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Deconstruction

Start from ABJM and assume that three real (Xα=1,2,3) of the eight real
(X I=1..8) transverse scalar fields are compactified on a three-torus

Xα ∼ Xα + 2πRα

If deconstruction around that three-torus gives rise to an M5 brane in a
constant background C-field, we must among other things, also get the
right constant term − 1

16π |C|2. This is SUSY theory and an arbitrary
constant shift of the Lagrangian is not allowed.

The d3x part is the space-time of the M2. The d3σ comes from the
auxiliary (fuzzy) three-torus. Where does

√
g come from? The inner

product is

〈T m,T n〉 =

∫
d3σ

(2π)3T
mTn
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Deconstruction

unit normalized for functions T m = eimασα
.

Let YαRα = Xα− 2πσαRα (no sum) denote fluctuations of scalar fields
in transverse space. From the ansatz

Yα ∝ gǫαβγBβγ .

we get
∫

d3σ∂αYα ∝
∫

dB

Both sides are 2π quantized. Hence no metric is involved in the
proportionality constant here.

The metric arises from identifying the Chern-Simons level by reducing
the fuzzy three-torus to a fuzzy two-torus and relate the
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Deconstruction

star-three-product with matrices of size N × N. Here N corresponds to
U(N) × U(N) gauge group. We then get (for k = 1)

N2

4π2√g

as an overall factor multiplying the otherwise canonically normalized
BLG action defined with a unit normalized Nambu bracket
schematically as

∫
d3σ

(
−DX IDX I − {X I , X J , X K }{X I , X J , X K }

)
.

Expanding this action in fluctuations as

X I = T I + Yα∂αT I + ..
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Deconstruction

we get the desired measure factor d3σ
√

g for the M5 brane. For
instance

1√
g

∂αT I∂βT IdYαdY β

=
1√
g

gαβgǫαγδgǫβǫωdBγδdBǫω

=
√

ggγǫgδωdBγδdBǫω

and other terms go the same way. We get the right factor of
√

g.

The precise numerical value of proportionality constant is fixed by
requiring we reproduce the selfdual coupling.
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Deconstruction

Doing that we can identify the constant background C-field to be

C =
N

2π2√g
dσ1 ∧ dσ2 ∧ dσ3.

The same factor of
√

g/N occurs in the non-commutativity parameter

~ =
2π

N
√

g.

By taking ordinary (non-commutative limit) we thus get infinite C-field,
and vice versa.

One must be able to derive the value 1
8π of the M5 coupling constant

from deconstruction. The result I found is that this value of the coupling
corresponds to a modified Dirac charge quantization condition

∫
dB ∈ 2πNZ.
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Deconstruction

If I knew that one must have this quantization condition, then I could
have said that I had derived the value 1

8π for the M5 brane coupling.

The number of M2 branes is N2, but reducing this to D2 branes by
taking k → ∞ we find N D2 and not N2. This is due to orbifolding
which amounts to reducing T m1m2m3 to T 1m2m3 by adapting an idea by
Nakwoo Kim using Bloch waves on an orbifold. The magnetic charge
of the bunch of M2 should be equal to the magnetic charge of the
bunch of D2 upon dimensional reduction, hence the magnetic charge
should be 2πN and never 2πN2.
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Non-Abelian M5

We take three-algebra generators as

T mm′

(σ, σ′) = T m(σ)T m′

(σ′)

and we define the star-three-product on this tensor product as

(T mm′ ∗ Tpp′ ∗ T nn′

)AB = (T m ∗ Tp ∗ T n)A(T m′ ∗ Tp′ ∗ T n′

)B.

We can have different non-commutativity parameters for A and B
products,

~A =
2π

NA
,

~B =
2π

NB
.

and NA will count the degree of fuzziness while NB will give the
non-Abelian structure on M5. Number of three-algebra generators in B
is N3

B and this counts the degrees of freedom on M5. We shall take
NA = ∞ unless we are interested in non-commutative M5. Still, on a
three-torus we get a C-field.
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S3/Zk

If Z A ∈ C
4, orbifolding C

4/Zk acts like

Z A → e
2πi
k Z A.

Since the fiber direction on S3 is the phase, Ga = eiψG̃a, the
orbifolding amounts to orbifolding the fiber as S1/Zk . (Here
Z A = (Ga, Gȧ) and 4 → 2 + 2 of SU(4) → SU(2) × SU(2).)

Orbifolding enable us to interpolate between D4 and M5.

Once one orbifolds transverse space the total antisymmetry of the
three-bracket in the ABJM Lagrangian is broken, and we can no longer
use the BLG form, but have to use the ABJM form. Taking k → ∞ we
get D4 on S2 base of S3 as viewed as a Hopf fibration. Taking k = 1
we get M5 on S3.
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S3/Zk

The GRVV equation

Ga = [Ga, Gb; Gb]

only gives fuzzy S2 if we use matrices. We find S3 if we use
embedding functions G1 = X 1 + iX 2 and G2 = X 3 + iX 4. In a special
case we have the Nambu bracket and a classical S3,

Ga = {Ga,Gb,Gb}
⇔

ǫijklX l = {X i , X j , X k}.

Andreas Gustavsson (CQUEST) Associative star-three-product 2010 33 / 33


	Motivation
	ABJM theory
	Star-product
	Star-three-product
	Three-algebra and star-three-product
	Degrees of freedom
	Connection with usual ABJM
	Abelian M5
	Deconstruction
	Non-Abelian M5
	S3/Zk

