## A new approach to holographic super-conductors

**Umut Gürsoy** 

**University of Utrecht** 

Kolimbari, Crete—September 15, 2010

arXiv:1007.0500 arXiv:1007.4854

A new approach to holographic super-conductors - p.1

- High  $T_c$  super-conductors are strongly correlated condensed matter systems
- Reasonable to expect the strongly coupled fixed point secretly possess a GR description

- High  $T_c$  super-conductors are strongly correlated condensed matter systems
- Reasonable to expect the strongly coupled fixed point secretly possess a GR description
- Explicit holographic realization Gubser; Hartnoll, Herzog, Horowitz '08
  - Charged AdS BH +  $\Phi$
  - A second order normal-to-superfluid transition at  $T_c$ ,  $\langle \Phi \rangle$  order parameter.
  - Enjoy success in reproducing expected behavior in conductivity  $\sigma(\omega, T)$  etc.

- High  $T_c$  super-conductors are strongly correlated condensed matter systems
- Reasonable to expect the strongly coupled fixed point secretly possess a GR description
- Explicit holographic realization Gubser; Hartnoll, Herzog, Horowitz '08
  - Charged AdS BH +  $\Phi$
  - A second order normal-to-superfluid transition at  $T_c$ ,  $\langle \Phi \rangle$  order parameter.
  - Enjoy success in reproducing expected behavior in conductivity  $\sigma(\omega, T)$  etc.
- Many open issues:
  - No microscopic understanding
  - Weak-strong duality, role of  $\alpha'$  corrections ?
  - large-N limit and  $g_s$  corrections ?

## A different approach

# A different approach

- 1. A chain of dualities
  - Superconductors ⇔ spin-models
     e.g. the XY model of paramagnet-ferromagnet transition, the O(3) spin model etc.
  - Spin-models ⇔ low-energy effective theory of gauge theories
  - Gauge-theories at strong coupling ⇔ gravity

# A different approach

- 1. A chain of dualities
  - Superconductors ⇔ spin-models
     e.g. the XY model of paramagnet-ferromagnet transition, the O(3) spin model etc.
  - Spin-models ⇔ low-energy effective theory of gauge theories
  - Gauge-theories at strong coupling ⇔ gravity
- 2. An explicit model based on NCST  $\Leftrightarrow$  XY-model of super-fluidity.

## Outline

- Lattice gauge theory- Spin model equivalence and the Gravity/Spin-model correspondence
- Continuous Hawking-Page transitions ⇔ normal-to-superfluid transitions
- A model in d + 1 NCST: thermodynamics and transport
- Linear dilaton CFT as the world-sheet theory near transition
- Critical exponents and mean-field scaling
- Discussion

## Lattice gauge theory and Spin-models

Polyakov '78; Susskind '79

# Lattice gauge theory and Spin-models

Polyakov '78; Susskind '79

- Any LGT with *arbitrary* gauge group *G* in d-dimensions with arbitrary *adjoint matter*
- Integrate out gauge invariant states ⇒ generate effective theory for the Polyakov loop
- $Z_{LGT}(T) \sim Z_{SpM}(T^{-1})$
- Ferromagnetic spin model  $\mathcal{H} = -J \sum_{\langle ij \rangle} \vec{s_i} \cdot \vec{s_j} + \cdots$ in d-1 dimensions with spin symmetry C = Center(G)

# Lattice gauge theory and Spin-models

Polyakov '78; Susskind '79

- Any LGT with *arbitrary* gauge group *G* in d-dimensions with arbitrary *adjoint matter*
- Integrate out gauge invariant states ⇒ generate effective theory for the Polyakov loop
- $Z_{LGT}(T) \sim Z_{SpM}(T^{-1})$
- Ferromagnetic spin model  $\mathcal{H} = -J \sum_{\langle ij \rangle} \vec{s_i} \cdot \vec{s_j} + \cdots$ in d-1 dimensions with spin symmetry C = Center(G)
- Inversion of temperature: Deconfined (high T) phase in LGT ⇔ Ordered (low T) phase of SpM Confined (low T) phase in LGT ⇔ Disordered (high T) phase

of SpM

# **LGT - SpM equivalence at criticality**

Svetitsky and Yaffe '82

# LGT - SpM equivalence at criticality

Svetitsky and Yaffe '82

• If criticality prevails in the continuum limit of the LGT The critical phenomena of the gauge theory and the Spin model are in same universality class.

 $\Rightarrow$  Continuum version of the equivalence

# LGT - SpM equivalence at criticality

Svetitsky and Yaffe '82

• If criticality prevails in the continuum limit of the LGT The critical phenomena of the gauge theory and the Spin model are in same universality class.

 $\Rightarrow$  Continuum version of the equivalence

- Examples:
  - 1. SU(N) with N > 4, d > 3Spin model with  $Z_N$  fixed point: d = 4 non-trivial O(2) XY model exponents, d > 4 mean-field exponents. Includes the  $N \to \infty$  limit, where  $C \to U(1)$ .
  - 2. d = 3, N > 4

Spin model with  $Z_N$  fixed point in 2 spatial dimensions: *BKT transition* 

The N→∞ limit: SU(∞) LGT with adj. matter in d-dimensions
 ⇔ U(1) invariant XY model in d - 1 dimensions.

- The N→∞ limit: SU(∞) LGT with adj. matter in d-dimensions
   ⇔ U(1) invariant XY model in d − 1 dimensions.
- Arrange adj. matter s.t. critical phenomena prevails in the continuum of LGT
- Strongly coupled critical phenomena in the ferromagnet ⇔ gravity dual of the gauge theory.

- The N→∞ limit: SU(∞) LGT with adj. matter in d-dimensions
   ⇔ U(1) invariant XY model in d − 1 dimensions.
- Arrange adj. matter s.t. critical phenomena prevails in the continuum of LGT
- Strongly coupled critical phenomena in the ferromagnet ⇔ gravity dual of the gauge theory.

"Gravity/Spin-model correspondence"

- The N→∞ limit: SU(∞) LGT with adj. matter in d-dimensions
   ⇔ U(1) invariant XY model in d 1 dimensions.
- Arrange adj. matter s.t. critical phenomena prevails in the continuum of LGT
- Strongly coupled critical phenomena in the ferromagnet ⇔ gravity dual of the gauge theory.
- "Gravity/Spin-model correspondence"
  - *Continuous* Hawking-Page transitions in gravity ⇔ normal-to-superfluid transition in the XY model.

Witten '98, Aharony-Witten '98

Witten '98, Aharony-Witten '98

• GR background with Hawking-Page transition:

$$ds_{TG}^{2} = G_{0}(r)dr^{2} + H_{0}(r)dt^{2} + I_{0}(r)dK + \cdots; \qquad \overline{\Phi} = \overline{\Phi}_{0}(r)$$
  

$$ds_{TG}^{2} = G(r)dr^{2} + H(r)dt^{2} + I(r)dK + \cdots; \qquad \overline{\Phi} = \overline{\Phi}(r)$$
  

$$dB = 0, \qquad B_{\mu\nu} = B_{rt} = const.$$

Witten '98, Aharony-Witten '98

• GR background with Hawking-Page transition:

$$ds_{TG}^2 = G_0(r)dr^2 + H_0(r)dt^2 + I_0(r)dK + \cdots; \quad \overline{\Phi} = \overline{\Phi}_0(r)$$
  

$$ds_{TG}^2 = G(r)dr^2 + H(r)dt^2 + I(r)dK + \cdots; \quad \overline{\Phi} = \overline{\Phi}(r)$$
  

$$dB = 0, \quad B_{\mu\nu} = B_{rt} = const.$$

- The topological shift symmetry:  $\psi \rightarrow \psi + const; \quad \psi \equiv \int_M B$
- U(1) symmetry in the winding F-string sector, broken down to  $Z_N$  at finite N.

Witten '98, Aharony-Witten '98

• GR background with Hawking-Page transition:

$$ds_{TG}^2 = G_0(r)dr^2 + H_0(r)dt^2 + I_0(r)dK + \cdots; \quad \overline{\Phi} = \overline{\Phi}_0(r)$$
  

$$ds_{TG}^2 = G(r)dr^2 + H(r)dt^2 + I(r)dK + \cdots; \quad \overline{\Phi} = \overline{\Phi}(r)$$
  

$$dB = 0, \quad B_{\mu\nu} = B_{rt} = const.$$

- The topological shift symmetry:  $\psi \rightarrow \psi + const; \qquad \psi \equiv \int_M B$
- U(1) symmetry in the winding F-string sector, broken down to  $Z_N$  at finite N.
- Under the correspondence  $\langle \mathcal{W}_F \rangle_{gr} \Leftrightarrow \langle P \rangle_{FT} \Leftrightarrow |M| e^{i\psi}$

F-string expectation value:  $\mathcal{W}_F = \int \mathcal{D}X_{\mu}\mathcal{D}h_{ab} e^{-\int (G+iB+\bar{\Phi}R^{(2)})}$  $e^{\int G} = |M|$  and  $e^{i\int B} = e^{i\psi}$ 

F-string expectation value:  $\mathcal{W}_F = \int \mathcal{D}X_{\mu}\mathcal{D}h_{ab} e^{-\int (G+iB+\bar{\Phi}R^{(2)})}$  $e^{\int G} = |M|$  and  $e^{i\int B} = e^{i\psi}$ 



Large N  $\Leftrightarrow g_s \to 0$ :  $|M| \sim \langle \mathcal{W}_F \rangle_{TG} = 0;$  $|M| \sim \langle \mathcal{W}_F \rangle_{BH} \neq 0;$ 

normal (high T) phasesuperfluid (low T) phase

F-string expectation value:  $\mathcal{W}_F = \int \mathcal{D}X_{\mu}\mathcal{D}h_{ab} e^{-\int (G+iB+\bar{\Phi}R^{(2)})}$  $e^{\int G} = |M|$  and  $e^{i\int B} = e^{i\psi}$ 



Large N  $\Leftrightarrow g_s \to 0$ :  $|M| \sim \langle \mathcal{W}_F \rangle_{TG} = 0$ ; normal (high T) phase  $|M| \sim \langle \mathcal{W}_F \rangle_{BH} \neq 0$ ; superfluid (low T) phase On the BH,  $\langle \mathcal{W}_F \rangle_{BH} \sim \int \mathcal{D}\psi(K) e^{-\mathcal{A}_{gr}[\psi]} \mathcal{W}_F$ .

- For d-1=2 fluctuations  $\delta\psi$  IR divergence,  $\langle M\rangle=0$
- For d-1 > 2 set  $\psi = \psi_0$ , spontaneous breaking of the U(1).

F-string expectation value:  $\mathcal{W}_F = \int \mathcal{D}X_{\mu}\mathcal{D}h_{ab} e^{-\int (G+iB+\bar{\Phi}R^{(2)})}$  $e^{\int G} = |M|$  and  $e^{i\int B} = e^{i\psi}$ 



Large N  $\Leftrightarrow g_s \to 0$ :  $|M| \sim \langle \mathcal{W}_F \rangle_{TG} = 0$ ; normal (high T) phase  $|M| \sim \langle \mathcal{W}_F \rangle_{BH} \neq 0$ ; superfluid (low T) phase On the BH,  $\langle \mathcal{W}_F \rangle_{BH} \sim \int \mathcal{D}\psi(K) e^{-\mathcal{A}_{gr}[\psi]} \mathcal{W}_F$ .

- For d-1=2 fluctuations  $\delta\psi$  IR divergence,  $\langle M\rangle=0$
- For d-1 > 2 set  $\psi = \psi_0$ , spontaneous breaking of the U(1).

#### $\delta\psi$ : Goldstone mode of the superfluid

### **Identification of the symmetries**

#### **Identification of the symmetries**

| Ť       | Gauge theory                | Gravity                         |   | Spin model        | T        |
|---------|-----------------------------|---------------------------------|---|-------------------|----------|
| $T_{-}$ | Deconf., $\mathcal{V}(1)$   | $_{\mathcal{C}}$ BH, $U(1)_{E}$ | 3 | S.fluid, $U(1)_S$ | $T^{-1}$ |
| T       | Conf., $U(1)_{\mathcal{C}}$ | TG, $U(1)_B$                    |   | Normal, $U(1)_S$  |          |

### **Identification of the symmetries**

|                        | Gauge theory                | Gravity                         | Spin model        | T        |
|------------------------|-----------------------------|---------------------------------|-------------------|----------|
| $T_{-}$                | Deconf., $\mathcal{V}(1)$   | $_{\mathcal{C}}$ BH, $U(1)_{B}$ | S.fluid, $U(1)_S$ | $T^{-1}$ |
| $\left. T \right ^{r}$ | Conf., $U(1)_{\mathcal{C}}$ | TG, $U(1)_B$                    | Normal, $U(1)_S$  |          |

Another condition for superfluidity:

Second speed  $c_{\psi} \to 0$  as  $T \to T_c$  iff a continuous phase transition

Continuous Hawking-Page ⇔ Normal-to-superfluid transition

## Two approaches to GR/SpM correspondence

# Two approaches to GR/SpM correspondence

#### Top-bottom approach

- Construct the SU(N) LGT with continuous conf-deconf transition in the continuum
- Construct the dual D-brane set-up
- Take decoupling limit and study the black-brane solution
- Compute thermodynamic observables by bulk objects, critical exponents by probe strings.

# Two approaches to GR/SpM correspondence

#### Top-bottom approach

- Construct the SU(N) LGT with continuous conf-deconf transition in the continuum
- Construct the dual D-brane set-up
- Take decoupling limit and study the black-brane solution
- Compute thermodynamic observables by bulk objects, critical exponents by probe strings.

#### Bottom-up approach

- Construct a dilaton-gravity in d + 1 dimensions with a continuous HP transition
- Compute observables

The first: a microscopic handle on AdS/CMT

We adopt the latter approach in this talk.

### The model

Dual of SU(N) g.t., inspired by NCST U.G., Kiritsis '07; U.G., Kiritsis, Nitti '07

### The model

Dual of SU(N) g.t., inspired by NCST U.G., Kiritsis '07; U.G., Kiritsis, Nitti '07 Action in the string frame

$$\mathcal{A}_{s} = \frac{1}{g_{s}^{2}\ell_{s}^{d-1}} \int d^{d+1}x \sqrt{-g_{s}} e^{-2\bar{\Phi}} \left( R_{s} + 4(\partial\bar{\Phi})^{2} + \frac{\delta c}{\ell_{s}^{2}} - \frac{1}{12}H_{(3)}^{2} \right) - \frac{1}{2(d+1)!}F_{(d+1)}^{2} + \cdots$$
#### The model

Dual of SU(N) g.t., inspired by NCST U.G., Kiritsis '07; U.G., Kiritsis, Nitti '07 Action in the string frame

$$\mathcal{A}_{s} = \frac{1}{g_{s}^{2}\ell_{s}^{d-1}} \int d^{d+1}x \sqrt{-g_{s}} e^{-2\bar{\Phi}} \left( R_{s} + 4(\partial\bar{\Phi})^{2} + \frac{\delta c}{\ell_{s}^{2}} - \frac{1}{12}H_{(3)}^{2} \right) - \frac{1}{2(d+1)!}F_{(d+1)}^{2} + \cdots$$

Replace  $F_{(d+1)}$  in the action by the solution  $F_{(d+1)} \sim N\epsilon_{(d+1)}F(\Phi)$ Define the rescaled dilaton  $\Phi = \overline{\Phi} + \log N$ Action in the Einstein frame  $g_{s,\mu\nu} = e^{\frac{4\Phi}{d-1}}g_{\mu\nu}$ :

#### The model

Dual of SU(N) g.t., inspired by NCST U.G., Kiritsis '07; U.G., Kiritsis, Nitti '07 Action in the string frame

$$\mathcal{A}_{s} = \frac{1}{g_{s}^{2}\ell_{s}^{d-1}} \int d^{d+1}x \sqrt{-g_{s}} e^{-2\bar{\Phi}} \left( R_{s} + 4(\partial\bar{\Phi})^{2} + \frac{\delta c}{\ell_{s}^{2}} - \frac{1}{12}H_{(3)}^{2} \right) - \frac{1}{2(d+1)!}F_{(d+1)}^{2} + \cdots$$

Replace  $F_{(d+1)}$  in the action by the solution  $F_{(d+1)} \sim N\epsilon_{(d+1)}F(\Phi)$ Define the rescaled dilaton  $\Phi = \bar{\Phi} + \log N$ Action in the Einstein frame  $g_{s,\mu\nu} = e^{\frac{4\Phi}{d-1}}g_{\mu\nu}$ :  $\mathcal{A} = \frac{N^2}{g_s^2 \ell_s^{d-1}} \int d^{d+1}x \sqrt{-g} \left(R_s - \frac{4}{d-1}(\partial \Phi)^2 + V(\Phi)\cdots\right)$ 

Dilaton potential  $V(\Phi)$ : a phenomenological input; contains information on the gauge theory (matter content, beta-function, etc.)

U.G. arXiv:1007.0500  $V(\Phi) = V_{\infty} e^{\frac{4}{d-1}\Phi} (1 + V_{sub}(\Phi));$  as  $\Phi \gg 1$ A continuous phase transition  $\delta F(T_c) = 0, \, \delta S(T_c) = 0$  at a finite critical temperature  $T_c = \frac{\sqrt{V_{\infty}}}{4\pi}.$ 

U.G. arXiv:1007.0500  $V(\Phi) = V_{\infty} e^{\frac{4}{d-1}\Phi} (1 + V_{sub}(\Phi));$  as  $\Phi \gg 1$ A continuous phase transition  $\delta F(T_c) = 0, \, \delta S(T_c) = 0$  at a finite critical temperature  $T_c = \frac{\sqrt{V_{\infty}}}{4\pi}.$ 

- nth order transition for  $V_{sub}(\Phi) = e^{-\frac{2}{n-1}\Phi}$ ,
- BKT scaling for  $V_{sub}(\Phi) = \Phi^{-\alpha}$ .

U.G. arXiv:1007.0500  $V(\Phi) = V_{\infty} e^{\frac{4}{d-1}\Phi} (1 + V_{sub}(\Phi));$  as  $\Phi \gg 1$ A continuous phase transition  $\delta F(T_c) = 0, \, \delta S(T_c) = 0$  at a finite critical temperature  $T_c = \frac{\sqrt{V_{\infty}}}{4\pi}.$ 

• nth order transition for  $V_{sub}(\Phi) = e^{-\frac{2}{n-1}\Phi}$ ,

• BKT scaling for  $V_{sub}(\Phi) = \Phi^{-\alpha}$ .

We focus on the case d - 1 = 2, 3 and n = 2 in this talk: For example in 3D  $V = V_{\infty}e^{\frac{4}{3}\Phi} (1 + 2e^{2\Phi_0}e^{-2\Phi})$ 

U.G. arXiv:1007.0500  $V(\Phi) = V_{\infty} e^{\frac{4}{d-1}\Phi} (1 + V_{sub}(\Phi));$  as  $\Phi \gg 1$ A continuous phase transition  $\delta F(T_c) = 0, \, \delta S(T_c) = 0$  at a finite critical temperature  $T_c = \frac{\sqrt{V_{\infty}}}{4\pi}.$ 

- nth order transition for  $V_{sub}(\Phi) = e^{-\frac{2}{n-1}\Phi}$ ,
- BKT scaling for  $V_{sub}(\Phi) = \Phi^{-\alpha}$ .

We focus on the case d - 1 = 2, 3 and n = 2 in this talk: For example in 3D  $V = V_{\infty}e^{\frac{4}{3}\Phi} (1 + 2e^{2\Phi_0}e^{-2\Phi})$  An analytic kink solution from asymptotically AdS at r = 0,  $\Phi = \Phi_0$  to linear-dilaton at  $r \to \infty$ ,  $\Phi \to \infty$ :

$$ds^{2} = e^{-\frac{4}{3}\Phi_{0}} \frac{\cosh^{\frac{2}{3}}(\frac{3r}{2\ell})}{\sinh^{2}(\frac{3r}{2\ell})} \left(dt^{2} + dx_{d-1}^{2} + dr^{2}\right),$$
$$e^{\Phi(r)} = e^{\Phi_{0}} \cosh(\frac{3r}{2\ell}).$$

#### **Thermodynamics**

and the black hole at  $r_h = \infty$ ,  $\phi_h = \infty$ : U.G. arXiv:1007.0500 A second order transition between the thermal gas



#### **Thermodynamics**

and the black hole at  $r_h = \infty$ ,  $\phi_h = \infty$ : U.G. arXiv:1007.0500 A second order transition between the thermal gas



- No latent heat  $\delta F(T_c) = 0$ ,  $\delta S(T_c) = 0$
- Discontinuous specific heat  $\Delta C_v(T)$
- Speed of density waves discontinuous  $c_s^2 = S/C_v$

#### **Thermodynamics**

and the black hole at  $r_h = \infty$ ,  $\phi_h = \infty$ : U.G. arXiv:1007.0500 A second order transition between the thermal gas



- No latent heat  $\delta F(T_c) = 0$ ,  $\delta S(T_c) = 0$
- Discontinuous specific heat  $\Delta C_v(T)$
- Speed of density waves discontinuous  $c_s^2 = S/C_v$

• Universality in the bulk viscosity: 
$$\frac{\xi}{s}\Big|_{T_c} = \frac{1}{2\pi(d-1)}$$
.

# Large N and string loops

- Boundary value of the dilaton  $\overline{\Phi}_0$
- Take  $\overline{\Phi}_0 \to -\infty$ ,  $N \to \infty$  such that  $e^{\overline{\Phi}_0}N = e^{\Phi_0} = const$ .
- String-loop counting:  $e^{-\frac{1}{4\pi}\int_M \sqrt{h}R^{(2)}\bar{\Phi}} = N^{2(1-g)}e^{-\frac{1}{4\pi}\int_M \sqrt{h}R^{(2)}\Phi}$
- As long as  $\int_M \sqrt{h} R^{(2)} \Phi$  is finite string-perturbation expansion well defined
- In the large N limit it is dominated by the sphere diagrams.

- Expectation: strong correlations  $\Leftrightarrow \alpha'$  corrections suppressed
- The correlation length  $\xi \sim t^{-\nu} \to \infty$  near  $T_c$
- Indeed  $\alpha' R_s \sim e^{-2\Phi_h} \Leftrightarrow$  Two-derivative theory becomes exact as  $T \to T_c$ .

- Expectation: strong correlations  $\Leftrightarrow \alpha'$  corrections suppressed
- The correlation length  $\xi \sim t^{-\nu} \to \infty$  near  $T_c$
- Indeed  $\alpha' R_s \sim e^{-2\Phi_h} \Leftrightarrow$  Two-derivative theory becomes exact as  $T \to T_c$ .
- In the same regime  $1 \ll \Phi \ll \Phi_h$  the solution becomes exactly linear-dilaton in the string-frame:

$$ds_s^2 = \left(1 + \mathcal{O}(e^{-\sqrt{V_{\infty}}r})\right) \left(dt^2 + dx_{d-1}^2 + dr^2\right),$$
  
$$\Phi(r) = \frac{\sqrt{V_{\infty}}}{2}r + \mathcal{O}(e^{-\sqrt{V_{\infty}}r}).$$

for large  $1 \ll r \ll r_h$ .

- Expectation: strong correlations  $\Leftrightarrow \alpha'$  corrections suppressed
- The correlation length  $\xi \sim t^{-\nu} \to \infty$  near  $T_c$
- Indeed  $\alpha' R_s \sim e^{-2\Phi_h} \Leftrightarrow$  Two-derivative theory becomes exact as  $T \to T_c$ .
- In the same regime  $1 \ll \Phi \ll \Phi_h$  the solution becomes exactly linear-dilaton in the string-frame:

$$ds_s^2 = \left(1 + \mathcal{O}(e^{-\sqrt{V_{\infty}}r})\right) \left(dt^2 + dx_{d-1}^2 + dr^2\right),$$
  
$$\Phi(r) = \frac{\sqrt{V_{\infty}}}{2}r + \mathcal{O}(e^{-\sqrt{V_{\infty}}r}).$$

for large  $1 \ll r \ll r_h$ .

• The continuous HP transition should be governed by a linear-dilaton CFT on the world-sheet!

• Landau theory: fluctuations of the order parameter  $|M|e^{i\psi}$  $F_L \propto \int |M|^2 (\partial \delta \psi)^2 + \cdots$ 

- Landau theory: fluctuations of the order parameter  $|M|e^{i\psi}$  $F_L \propto \int |M|^2 (\partial \delta \psi)^2 + \cdots$
- Second sound vanishes as  $c_{\psi}^2 \sim |M|^2 \sim (T_c T)^{2\beta}$

- Landau theory: fluctuations of the order parameter  $|M|e^{i\psi}$  $F_L \propto \int |M|^2 (\partial \delta \psi)^2 + \cdots$
- Second sound vanishes as  $c_{\psi}^2 \sim |M|^2 \sim (T_c T)^{2\beta}$
- Gravity/Spin-Model correspondence:  $F_L \Leftrightarrow \mathcal{A}_{gr}$  on-shell, at large N

Expect mean-field scaling  $c_{\psi}^2 \sim (T_c - T)$ .

• Equate the Landau free energy and the regulated on-shell action:

 $F_L(T) = \Delta \mathcal{A}(T) = \mathcal{A}_{BH}(T) - \mathcal{A}_{TG}(T)$ 

• Equate the Landau free energy and the regulated on-shell action:

 $F_L(T) = \Delta \mathcal{A}(T) = \mathcal{A}_{BH}(T) - \mathcal{A}_{TG}(T)$ 

• Associate  $\delta \psi$  with fluctuations of the B-field:  $\psi = \int_M B$ 

• Equate the Landau free energy and the regulated on-shell action:

 $F_L(T) = \Delta \mathcal{A}(T) = \mathcal{A}_{BH}(T) - \mathcal{A}_{TG}(T)$ 

- Associate  $\delta \psi$  with fluctuations of the B-field:  $\psi = \int_M B$
- One finds  $c_{\psi}^2 \propto e^{-\sqrt{V_{\infty}}r_h} \sim (T T_c)$ .
- Second sound indeed vanishes at  $T_c$  with the mean-field exponent!

- Identification:  $\langle \vec{m}(x) \rangle \Leftrightarrow \langle P[x] \rangle \Leftrightarrow e^{-S_{F1}}$
- For  $\psi = 0$ ,  $\vec{m} = m_x \hat{x}$  thus  $m_x \sim ReP$

- Identification:  $\langle \vec{m}(x) \rangle \Leftrightarrow \langle P[x] \rangle \Leftrightarrow e^{-S_{F1}}$
- For  $\psi = 0$ ,  $\vec{m} = m_x \hat{x}$  thus  $m_x \sim ReP$
- More generally, in the superfluid (BH) phase  $\vec{m} = |\vec{m}|\vec{v}$  then  $m_{\parallel} \sim Re\psi, m_{\perp} \sim Im\psi$ .

- Identification:  $\langle \vec{m}(x) \rangle \Leftrightarrow \langle P[x] \rangle \Leftrightarrow e^{-S_{F1}}$
- For  $\psi = 0$ ,  $\vec{m} = m_x \hat{x}$  thus  $m_x \sim ReP$
- More generally, in the superfluid (BH) phase  $\vec{m} = |\vec{m}|\vec{v}$  then  $m_{\parallel} \sim Re\psi, m_{\perp} \sim Im\psi$ .
- For the two-point function:

 $\langle m_i(x) \ m_j(0) \rangle =$  $\langle \vec{m}_{\parallel}(x) \cdot \vec{m}_{\parallel}(0) \rangle v_i v_j + \langle \vec{m}_{\perp}(x) \cdot \vec{m}_{\perp}(0) \rangle (\delta_{ij} - v_i v_j).$ 

- Identification:  $\langle \vec{m}(x) \rangle \Leftrightarrow \langle P[x] \rangle \Leftrightarrow e^{-S_{F1}}$
- For  $\psi = 0$ ,  $\vec{m} = m_x \hat{x}$  thus  $m_x \sim ReP$
- More generally, in the superfluid (BH) phase  $\vec{m} = |\vec{m}|\vec{v}$  then  $m_{\parallel} \sim Re\psi, m_{\perp} \sim Im\psi$ .
- For the two-point function:  $\langle m_i(x) \ m_j(0) \rangle =$  $\langle \vec{m}_{\parallel}(x) \cdot \vec{m}_{\parallel}(0) \rangle v_i v_j + \langle \vec{m}_{\perp}(x) \cdot \vec{m}_{\perp}(0) \rangle (\delta_{ij} - v_i v_j).$

 $\begin{array}{lll} \langle \vec{m}_{\parallel} \cdot \vec{m}_{\parallel} \rangle & \propto & \langle RePReP \rangle \\ \langle \vec{m}_{\perp} \cdot \vec{m}_{\perp} \rangle & \propto & \langle ImPImP \rangle \end{array}$ 

 $|\vec{m}| \Leftrightarrow |\langle P \rangle| \Leftrightarrow \langle e^{\int G + \Phi R} \rangle$ 

- In the normal (thermal gas) phase  $|\vec{m}| = 0$
- In the superfluid (black-hole) phase  $|\vec{m}| \neq 0$

 $|\vec{m}| \Leftrightarrow |\langle P \rangle| \Leftrightarrow \langle e^{\int G + \Phi R} \rangle$ 

- In the normal (thermal gas) phase  $|\vec{m}| = 0$
- In the superfluid (black-hole) phase  $|\vec{m}| \neq 0$

**Classical computation:** 

For  $\ell/\ell_s \gg 1$  calculate on the saddle-string solution

 $|\vec{m}| \Leftrightarrow |\langle P \rangle| \Leftrightarrow \langle e^{\int G + \Phi R} \rangle$ 

- In the normal (thermal gas) phase  $|\vec{m}| = 0$
- In the superfluid (black-hole) phase  $|\vec{m}| \neq 0$

#### **Classical computation:**

For  $\ell/\ell_s \gg 1$  calculate on the saddle-string solution Regulate the action  $S_{reg} \propto \int_{\epsilon}^{r_h} G + \Phi R$ Renormalization only affects the sub-leading terms as  $r_h \to \infty$ Dilaton piece is finite:  $\Phi \sim r_h, R \sim e^{-\sqrt{V_{\infty}}r_h}$ One finds  $S_{reg} = \frac{1}{2\pi\ell_s T(r_h)} \int_{\epsilon}^{r_h} e^{2A_s(r_h)} dr$ which gives  $|\vec{m}| = (T_c - T)^{\frac{2}{V_{\infty}\ell_s^2}}$ 

 $|\vec{m}| \Leftrightarrow |\langle P \rangle| \Leftrightarrow \langle e^{\int G + \Phi R} \rangle$ 

- In the normal (thermal gas) phase  $|\vec{m}| = 0$
- In the superfluid (black-hole) phase  $|\vec{m}| \neq 0$

#### **Classical computation:**

For  $\ell/\ell_s \gg 1$  calculate on the saddle-string solution Regulate the action  $S_{reg} \propto \int_{\epsilon}^{r_h} G + \Phi R$ Renormalization only affects the sub-leading terms as  $r_h \to \infty$ Dilaton piece is finite:  $\Phi \sim r_h$ ,  $R \sim e^{-\sqrt{V_{\infty}}r_h}$ One finds  $S_{reg} = \frac{1}{2\pi\ell_s T(r_h)} \int_{\epsilon}^{r_h} e^{2A_s(r_h)} dr$ which gives  $|\vec{m}| = (T_c - T)^{\frac{2}{V_{\infty}\ell_s^2}}$ Mean-field result only  $V_{\infty} = \frac{4}{\ell^2}$ 

# **One-point function: full path integral** Valid for any $\ell/\ell_s$

# **One-point function: full path integral**

Valid for any  $\ell/\ell_s$ Division of paths:  $r \in (0, r_m)$  UV,  $r \in (r_m, r_h)$  IR



# **One-point function: full path integral**

Valid for any  $\ell/\ell_s$ Division of paths:  $r \in (0, r_m)$  UV,  $r \in (r_m, r_h)$  IR



For  $r_h \rightarrow \infty$  and  $r_m$  large enough, the IR region governed by the linear-dilaton CFT.

# **One-point function: full path integral**

Valid for any  $\ell/\ell_s$ Division of paths:  $r \in (0, r_m)$  UV,  $r \in (r_m, r_h)$  IR



For  $r_h \to \infty$  and  $r_m$  large enough, the IR region governed by the linear-dilaton CFT.

 $\langle \Psi_i | \Psi_f \rangle = \int dX_m^{\mu}(\sigma) \int_{i,m} \mathcal{D} X^{\mu} e^{-\mathcal{S}[X]} \int_{m,f} \mathcal{D} X^{\mu} e^{-\mathcal{S}[X]}$  $r_h$  dependence of  $\langle \Psi_i \Psi_f \rangle$  determined by the IR path-integrals:

 $M(r_h) \sim PI(\tau_m, \infty)$  approximated by the linear-dilaton CFT.

#### **Linear-dilaton CFT**

- Stress-energy tensor  $T(z) = -\frac{1}{\alpha'} : \partial X^{\mu} \partial X_{\mu} : +v_{\mu} \partial^2 X^{\mu}$ with  $v_{\mu} = \frac{\sqrt{V_{\infty}}}{2} \delta_{\mu,r} \equiv m_0 \delta_{\mu,r}$
- Spectrum: Tachyon for d + 1 > 2; Graviton, dilaton and B-field fluctuations (massless); etc.
- Action:  $\mathcal{A}_{IR} = \frac{1}{4\pi\alpha'} \int_0^{2\pi} d\sigma \int_{\tau_m}^{\infty} d\tau \sqrt{\hat{h}} \left[ \hat{h}^{ab} \partial_a X^{\mu} \partial_b X^{\nu} \eta_{\mu\nu} + \frac{\alpha'}{4} v_{\mu} X^{\mu} \hat{R} \right].$
# **One-point function cont'ed**

# **One-point function cont'ed**

The IR path-integral in the Hamiltonian language:  $PI_{IR} = \sum_{\chi \in \mathcal{H}_{\perp}} \langle V_{\chi}(X_m, \tau_m) V_{\chi}^*(X_f, \infty) \rangle \Delta_{IR}(\chi)$ The propagator of a state  $\chi(p_r, p_{\perp}, k, w, N, \tilde{N})$ :  $\Delta_{IR}(\chi) = \int_{|z|<1} \frac{d^2z}{|z|^2} z^{L_0(\chi)-1} \bar{z}^{\tilde{L}_0(\chi)-1},$ The vertex operator  $V_{\chi}^*(X_f, \infty) = e^{-ip_r r_h}(\cdots),$ 

A new approach to holographic super-conductors - p.23

# **One-point function cont'ed**

The IR path-integral in the Hamiltonian language:  $PI_{IR} = \sum_{\chi \in \mathcal{H}_{\perp}} \langle V_{\chi}(X_m, \tau_m) V_{\chi}^*(X_f, \infty) \rangle \Delta_{IR}(\chi)$ The propagator of a state  $\chi(p_r, p_{\perp}, k, w, N, \tilde{N})$ :  $\Delta_{IR}(\chi) = \int_{|z|<1} \frac{d^2 z}{|z|^2} z^{L_0(\chi)-1} \bar{z} \tilde{L}_0(\chi)^{-1},$ The vertex operator  $V_{\chi}^*(X_f, \infty) = e^{-ip_r r_h}(\cdots),$ One finds  $PI_{IR} \sim \sum_{\chi} C_{\chi} e^{-ip_r^*(\chi)r_h}$  with

$$p_r^* = -im_0 \left( 1 + \sqrt{1 + \frac{m_*^2(\chi)}{m_0^2}} \right),$$
  
$$m_*^2 \equiv \frac{2}{\alpha'} \left( N + \tilde{N} - 2 \right) + p_\perp^2 + (2\pi kT)^2 + \left( \frac{w}{2\pi T \alpha'} \right)^2.$$

and level matching  $kw + N - \tilde{N} = 0$ .

## **Mean-field scaling from the Tachyon**

On the tachyon state:  $1 + \frac{m_*^2}{m_0^2} = \frac{1-d}{25-d}$ . real contribution to exponent; higher states: imaginary contribution.

## **Mean-field scaling from the Tachyon**

On the tachyon state:  $1 + \frac{m_*^2}{m_0^2} = \frac{1-d}{25-d}$ . real contribution to exponent; higher states: imaginary contribution. The  $r_h$  dependence of the one-point function:

 $|\vec{m}| \to e^{-m_0 r_h} \propto (T - T_c)^{\frac{1}{2}}.$ 

## **Mean-field scaling from the Tachyon**

On the tachyon state:  $1 + \frac{m_*^2}{m_0^2} = \frac{1-d}{25-d}$ . real contribution to exponent; higher states: imaginary contribution. The  $r_h$  dependence of the one-point function:

$$|\vec{m}| \to e^{-m_0 r_h} \propto (T - T_c)^{\frac{1}{2}}.$$

Mean-field scaling arise from the full computation!

# **Two-point function: classical computation**

### Three classical saddles:



# **Two-point function: classical computation**

#### Three classical saddles:



(a)  $\langle \vec{m}(L) \cdot \vec{m}(0) \rangle_a = |\vec{m}|^2$ . Finite in BH, 0 for TG.

# **Two-point function: classical computation**

#### Three classical saddles:



- (a)  $\langle \vec{m}(L) \cdot \vec{m}(0) \rangle_a = |\vec{m}|^2$ . Finite in BH, 0 for TG.
- (b)  $S_{F1} \to m_T L + \cdots$ , as  $T \to T_c$  where  $m_T = \frac{1}{2\pi \ell_s^2 T_c}$  $\langle \vec{m}(L) \cdot \vec{m}(0) \rangle_b \sim e^{-m_T L + \cdots}$  for  $L \gg 1$ .

 $\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle_{c} \propto \langle ReP[L]ReP[0] \rangle \sim \frac{e^{-m_{+}L}}{L^{d-3}} \\ \langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle_{c} \propto \langle ImP[L]ImP[0] \rangle \sim \frac{e^{-m_{-}L}}{L^{d-3}}$ 

 $\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle_{c} \propto \langle ReP[L]ReP[0] \rangle \sim \frac{e^{-m_{+}L}}{L^{d-3}}$  $\langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle_{c} \propto \langle ImP[L]ImP[0] \rangle \sim \frac{e^{-m_{-}L}}{L^{d-3}}$  $m_{+} \text{ minimum of the } CT^{+} \text{ modes: } G_{\mu\nu}, \Phi, \cdots$  $m_{-} \text{ minimum of the } CT^{-} \text{ modes: } B_{\mu\nu}, \cdots$ 

 $\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle_{c} \propto \langle ReP[L]ReP[0] \rangle \sim \frac{e^{-m_{+}L}}{L^{d-3}}$  $\langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle_{c} \propto \langle ImP[L]ImP[0] \rangle \sim \frac{e^{-m_{-}L}}{L^{d-3}}$  $m_{+} \text{ minimum of the } CT^{+} \text{ modes: } G_{\mu\nu}, \Phi, \cdots$  $m_{-} \text{ minimum of the } CT^{-} \text{ modes: } B_{\mu\nu}, \cdots$  $\text{Spectrum analysis U.G., Kiritsis, Nitti '07: } CT^{+} \text{ bounded from below for any T.}$ 

 $\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle_{c} \propto \langle ReP[L]ReP[0] \rangle \sim \frac{e^{-m_{+}L}}{L^{d-3}}$  $\langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle_{c} \propto \langle ImP[L]ImP[0] \rangle \sim \frac{e^{-m_{-}L}}{L^{d-3}}$  $m_{+} \text{ minimum of the } CT^{+} \text{ modes: } G_{\mu\nu}, \Phi, \cdots$ 

 $m_{-}$  minimum of the  $CT^{-}$  modes:  $B_{\mu\nu}, \cdots$ 

Spectrum analysis U.G., Kiritsis, Nitti '07:  $CT^+$  bounded from below for any T.

 $CT^-$  include a zero-mode:  $m_- = 0$  as  $\psi = \int_M B$  is modulus: Goldstone mode!

Correct qualitative behavior:  $\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle \sim \frac{e^{-m_{+}L} + e^{-m_{T}L}}{L^{d-3}}$  $\langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle \sim \frac{1}{L^{d-3}}$ 

 $\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle_{c} \propto \langle ReP[L]ReP[0] \rangle \sim \frac{e^{-m_{+}L}}{L^{d-3}} \\ \langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle_{c} \propto \langle ImP[L]ImP[0] \rangle \sim \frac{e^{-m_{-}L}}{L^{d-3}} \\ m_{+} \text{ minimum of the } CT^{+} \text{ modes: } G_{\mu\nu}, \Phi, \cdots$ 

 $m_{-}$  minimum of the  $CT^{-}$  modes:  $B_{\mu\nu}, \cdots$ 

Spectrum analysis U.G., Kiritsis, Nitti '07:  $CT^+$  bounded from below for any T.

 $CT^-$  include a zero-mode:  $m_- = 0$  as  $\psi = \int_M B$  is modulus: Goldstone mode!

Correct qualitative behavior:  $\langle \vec{m}_{\parallel}(L) \cdot \vec{m}_{\parallel}(0) \rangle \sim \frac{e^{-m_{+}L} + e^{-m_{T}L}}{L^{d-3}}$  $\langle \vec{m}_{\perp}(L) \cdot \vec{m}_{\perp}(0) \rangle \sim \frac{1}{L^{d-3}}$ 

Precisely the expected behavior from the XY model,

Except that  $\xi_{\parallel}^{-1} \to min(m_T, m_+)$  stays finite as  $T \to T_c$ .

(a) Disconnected and (c) Bulk exchange diagrams vanish

(a) Disconnected and (c) Bulk exchange diagrams vanish(b) Connected paths:



(a) Disconnected and (c) Bulk exchange diagrams vanish(b) Connected paths:



Propagator in the IR:  $\Delta_{IR}(\chi) \sim \int dp_r d^{d-2} p_{\perp} e^{-ip_x^*(\chi)L}$ 

 $p_{x}^{*} =$ 

On-shell momenta  $p_x$  for a winding mode w = 1:

$$-i\left(\frac{2}{\alpha'}\left(N+\tilde{N}-2\right)+p_{\perp}^{2}+p_{r}^{2}+2im_{0}p_{r}+(2\pi kT)^{2}+\left(\frac{1}{2\pi T\alpha'}\right)^{2}\right)^{\frac{1}{2}},$$

On-shell momenta  $p_x$  for a winding mode w = 1:

$$-i\left(\frac{2}{\alpha'}\left(N+\tilde{N}-2\right)+p_{\perp}^{2}+p_{r}^{2}+2im_{0}p_{r}+(2\pi kT)^{2}+\left(\frac{1}{2\pi T\alpha'}\right)^{2}\right)^{\frac{1}{2}},$$

One finds  $\xi(T)^{-1} = ip_x^*(\chi)_{min}$ . Minimum mode is the "winding tachyon":

$$\xi = \left(-\frac{4}{\alpha'} + \left(\frac{1}{2\pi T \alpha'}\right)^2\right)^{-\frac{1}{2}}$$

 $p_{x}^{*} =$ 

On-shell momenta  $p_x$  for a winding mode w = 1:

$$-i\left(\frac{2}{\alpha'}\left(N+\tilde{N}-2\right)+p_{\perp}^{2}+p_{r}^{2}+2im_{0}p_{r}+(2\pi kT)^{2}+\left(\frac{1}{2\pi T\alpha'}\right)^{2}\right)^{\frac{1}{2}},$$

One finds  $\xi(T)^{-1} = ip_x^*(\chi)_{min}$ . Minimum mode is the "winding tachyon":

$$\xi = \left(-\frac{4}{\alpha'} + \left(\frac{1}{2\pi T\alpha'}\right)^2\right)^{-\frac{1}{2}}$$

 $p_{x}^{*} =$ 

Indeed diverges if identify the transition with the Hagedorn temperature a la Atick-Witten

$$T_c = \frac{1}{4\pi\ell_s} \text{ and } \xi \to \frac{\ell_s}{2\sqrt{2}} \left(\frac{T-T_c}{T_c}\right)^{-\frac{1}{2}}$$

On-shell momenta  $p_x$  for a winding mode w = 1:

$$-i\left(\frac{2}{\alpha'}\left(N+\tilde{N}-2\right)+p_{\perp}^{2}+p_{r}^{2}+2im_{0}p_{r}+(2\pi kT)^{2}+\left(\frac{1}{2\pi T\alpha'}\right)^{2}\right)^{\frac{1}{2}},$$

One finds  $\xi(T)^{-1} = ip_x^*(\chi)_{min}$ . Minimum mode is the "winding tachyon":

$$\xi = \left(-\frac{4}{\alpha'} + \left(\frac{1}{2\pi T\alpha'}\right)^2\right)^{-\frac{1}{2}}$$

 $p_{x}^{*} =$ 

Indeed diverges if identify the transition with the Hagedorn temperature a la Atick-Witten

$$T_c = \frac{1}{4\pi\ell_s} \text{ and } \xi \to \frac{\ell_s}{2\sqrt{2}} \left(\frac{T-T_c}{T_c}\right)^{-\frac{1}{2}}$$

Mean-field scaling again!

(c) Connected diagrams: again  $\xi \propto \left(\frac{T_c - T}{T_c}\right)^{-\frac{1}{2}}$ 

- (c) Connected diagrams: again  $\xi \propto \left(\frac{T_c T}{T_c}\right)^{-\frac{1}{2}}$
- (b) Bulk exchange diagrams: winding not conserved, minimum modes w = 0:

- (c) Connected diagrams: again  $\xi \propto \left(\frac{T_c T}{T_c}\right)^{-\frac{1}{2}}$
- (b) Bulk exchange diagrams: winding not conserved, minimum modes w = 0:
  Real part: A unitary contribution from the Tachyon fluctuations for d − 1 = 2, 3 ONLY for second order transitions.

- (c) Connected diagrams: again  $\xi \propto \left(\frac{T_c T}{T_c}\right)^{-\frac{1}{2}}$
- (b) Bulk exchange diagrams: winding not conserved, minimum modes w = 0:
  Real part: A unitary contribution from the Tachyon fluctuations for d − 1 = 2, 3 ONLY for second order transitions.
  Imaginary part: Zero-mode of the B-field is Goldstone:
  ⟨m⊥(L) ⋅ m⊥(0)⟩ ~ 1/Ld-3

• No conventional long-range order in 2D  $\langle |\vec{m}| \rangle = 0$  at any T.

- No conventional long-range order in 2D  $\langle |\vec{m}| \rangle = 0$  at any T.
- Topological order through liberation of vortex-anti-vortex pairs (BKT).

- No conventional long-range order in 2D  $\langle |\vec{m}| \rangle = 0$  at any T.
- Topological order through liberation of vortex-anti-vortex pairs (BKT).
- Expectation from condensed matter:
  - (\*) One-point:  $\langle v(x) \rangle_{TG} = \langle v(x) \rangle_{BH} = 0$

- No conventional long-range order in 2D  $\langle |\vec{m}| \rangle = 0$  at any T.
- Topological order through liberation of vortex-anti-vortex pairs (BKT).
- Expectation from condensed matter:
  - (\*) One-point:  $\langle v(x) \rangle_{TG} = \langle v(x) \rangle_{BH} = 0$
  - (\*) Two-point in the super-fluid phase:  $\langle \bar{v}(L)v(0) \rangle_{BH} \sim \frac{1}{L^{p(T)}}$ (as opposed to exponential suppression for d-1>2)
  - (\*) Two-point in the normal phase:  $\langle \bar{v}(L)v(0) \rangle_{TG} \sim e^{-mL}$  plasma of vortex anti-vortex pairs.

# **D-strings and vortices**

# **D-strings and vortices**

• Propose to identify vortices with D-strings, inspired by magnetic quark analogy:  $v \Leftrightarrow e^{S_{D1}}$ 

## **D-strings and vortices**

- Propose to identify vortices with D-strings, inspired by magnetic quark analogy:  $v \Leftrightarrow e^{S_{D1}}$
- Charge of D-strings  $\Leftrightarrow$  vortex charge: Infinite energy configuration if  $N_D \neq N_{\overline{D}} ria$  Indeed  $\langle v(x) \rangle_{TG} = \langle v(x) \rangle_{BH} = 0$
## **D-strings and vortices**

- Propose to identify vortices with D-strings, inspired by magnetic quark analogy:  $v \Leftrightarrow e^{S_{D1}}$
- Charge of D-strings  $\Leftrightarrow$  vortex charge: Infinite energy configuration if  $N_D \neq N_{\overline{D}} ria$  Indeed  $\langle v(x) \rangle_{TG} = \langle v(x) \rangle_{BH} = 0$
- Expected qualitative behavior also for the two-point function.



• A general connection between gravity and spin-models. Two-derivative approximation expected to hold near  $T_c$ . Normal-to-superfluid transition  $\Leftrightarrow$  continuous HP in GR.

- A general connection between gravity and spin-models. Two-derivative approximation expected to hold near  $T_c$ . Normal-to-superfluid transition  $\Leftrightarrow$  continuous HP in GR.
- Role of large N clarified: number of spin-states at a site in case of SU(N).

- A general connection between gravity and spin-models. Two-derivative approximation expected to hold near T<sub>c</sub>.
  Normal-to-superfluid transition ⇔ continuous HP in GR.
- Role of large N clarified: number of spin-states at a site in case of SU(N).
- A specific case: SU(N) at large N  $\Leftrightarrow$  XY-type models.
- Physics around  $T_c$  governed by linear-dilaton CFT.
- Probe strings ⇔ spin fluctuations
- Scaling in second sound and other critical exponents  $\beta$  and  $\nu$  from GR as expected.

- A general connection between gravity and spin-models. Two-derivative approximation expected to hold near T<sub>c</sub>.
  Normal-to-superfluid transition ⇔ continuous HP in GR.
- Role of large N clarified: number of spin-states at a site in case of SU(N).
- A specific case: SU(N) at large N  $\Leftrightarrow$  XY-type models.
- Physics around  $T_c$  governed by linear-dilaton CFT.
- Probe strings  $\Leftrightarrow$  spin fluctuations
- Scaling in second sound and other critical exponents  $\beta$  and  $\nu$  from GR as expected.
- D-strings as vortices

• Top-down approach to AdS/CMT: D-brane constructions, embedding in *critical* string theory

- Top-down approach to AdS/CMT: D-brane constructions, embedding in *critical* string theory
- Corrections to critical exponents: 1/N corrections? beyond the semi-classical approximation?

- Top-down approach to AdS/CMT: D-brane constructions, embedding in *critical* string theory
- Corrections to critical exponents: 1/N corrections? beyond the semi-classical approximation?
- A qualitative model based on winding-tachyon:  $\mathcal{A}_{eff} \sim$  $\int e^{-2\Phi} \left( R + \frac{1}{2} (\partial \Phi)^2 + V(\Phi) + \frac{1}{2} |DT|^2 - \frac{1}{2} m_T^2 |T|^2 + F^2 \right)$

- Top-down approach to AdS/CMT: D-brane constructions, embedding in *critical* string theory
- Corrections to critical exponents: 1/N corrections? beyond the semi-classical approximation?
- A qualitative model based on winding-tachyon:  $\mathcal{A}_{eff} \sim$  $\int e^{-2\Phi} \left( R + \frac{1}{2} (\partial \Phi)^2 + V(\Phi) + \frac{1}{2} |DT|^2 - \frac{1}{2} m_T^2 |T|^2 + F^2 \right)$
- Generalization to other spin models e.g. discrete center: 3D Ising model from the GR dulal of large-N Sp(N)?

- Top-down approach to AdS/CMT: D-brane constructions, embedding in *critical* string theory
- Corrections to critical exponents: 1/N corrections? beyond the semi-classical approximation?
- A qualitative model based on winding-tachyon:  $\mathcal{A}_{eff} \sim$  $\int e^{-2\Phi} \left( R + \frac{1}{2} (\partial \Phi)^2 + V(\Phi) + \frac{1}{2} |DT|^2 - \frac{1}{2} m_T^2 |T|^2 + F^2 \right)$
- Generalization to other spin models e.g. discrete center: 3D Ising model from the GR dulal of large-N Sp(N)?
- Spin-models with non-Abelian spin symmetry e.g. O(3)? Enhanced symmetries at special temporal radii?

#### THANK YOU !