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• High Tc super-conductors are strongly correlated condensed

matter systems

• Reasonable to expect the strongly coupled fixed point secretly
possess a GR description
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matter systems

• Reasonable to expect the strongly coupled fixed point secretly
possess a GR description

• Explicit holographic realizationGubser; Hartnoll, Herzog, Horowitz ’08

• Charged AdS BH +Φ

• A second order normal-to-superfluid transition atTc, 〈Φ〉
order parameter.

• Enjoy success in reproducing expected behavior in
conductivityσ(ω, T ) etc.
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Holography and Superconductors
• High Tc super-conductors are strongly correlated condensed

matter systems

• Reasonable to expect the strongly coupled fixed point secretly
possess a GR description

• Explicit holographic realizationGubser; Hartnoll, Herzog, Horowitz ’08

• Charged AdS BH +Φ

• A second order normal-to-superfluid transition atTc, 〈Φ〉
order parameter.

• Enjoy success in reproducing expected behavior in
conductivityσ(ω, T ) etc.

• Many open issues:

• No microscopic understanding

• Weak-strong duality, role ofα′ corrections ?

• large-N limit andgs corrections ?

A new approach to holographic super-conductors – p.2



A different approach

A new approach to holographic super-conductors – p.3



A different approach

1. A chain of dualities

• Superconductors⇔ spin-models
e.g. the XY model of paramagnet-ferromagnet transition,
theO(3) spin model etc.

• Spin-models⇔ low-energy effective theory of gauge
theories

• Gauge-theories at strong coupling⇔ gravity
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A different approach

1. A chain of dualities

• Superconductors⇔ spin-models
e.g. the XY model of paramagnet-ferromagnet transition,
theO(3) spin model etc.

• Spin-models⇔ low-energy effective theory of gauge
theories

• Gauge-theories at strong coupling⇔ gravity

2. An explicit model based on NCST⇔ XY-model of
super-fluidity.
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Outline

• Lattice gauge theory- Spin model equivalence and the
Gravity/Spin-model correspondence

• Continuous Hawking-Page transitions⇔ normal-to-superfluid
transitions

• A model ind+ 1 NCST: thermodynamics and transport

• Linear dilaton CFT as the world-sheet theory near transition

• Critical exponents and mean-field scaling

• Discussion
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Lattice gauge theory and Spin-models
Polyakov ’78; Susskind ’79
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Lattice gauge theory and Spin-models
Polyakov ’78; Susskind ’79

• Any LGT with arbitrary gauge groupG in d-dimensionswith
arbitraryadjoint matter

• Integrate out gauge invariant states⇒ generate effective theory
for the Polyakov loop

• ZLGT (T ) ∼ ZSpM (T−1)

• Ferromagnetic spin modelH = −J
∑

〈ij〉 ~si · ~sj + · · ·
in d− 1 dimensionswith spin symmetryC = Center(G)
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Lattice gauge theory and Spin-models
Polyakov ’78; Susskind ’79

• Any LGT with arbitrary gauge groupG in d-dimensionswith
arbitraryadjoint matter

• Integrate out gauge invariant states⇒ generate effective theory
for the Polyakov loop

• ZLGT (T ) ∼ ZSpM (T−1)

• Ferromagnetic spin modelH = −J
∑

〈ij〉 ~si · ~sj + · · ·
in d− 1 dimensionswith spin symmetryC = Center(G)

• Inversion of temperature:
Deconfined (high T) phase in LGT⇔ Ordered (low T) phase of
SpM
Confined (low T) phase in LGT⇔ Disordered (high T) phase
of SpM
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LGT - SpM equivalence at criticality
Svetitsky and Yaffe ’82
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LGT - SpM equivalence at criticality
Svetitsky and Yaffe ’82

• If criticality prevails in thecontinuum limitof the LGT
The critical phenomena of the gauge theory and the Spin model
are insame universality class.
⇒ Continuum version of the equivalence
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LGT - SpM equivalence at criticality
Svetitsky and Yaffe ’82

• If criticality prevails in thecontinuum limitof the LGT
The critical phenomena of the gauge theory and the Spin model
are insame universality class.
⇒ Continuum version of the equivalence

• Examples:

1. SU(N) with N > 4, d > 3

Spin model withZN fixed point:d = 4 non-trivialO(2) XY
model exponents,d > 4 mean-field exponents.Includes the
N → ∞ limit, whereC → U(1).

2. d = 3,N > 4

Spin model withZN fixed point in 2 spatial dimensions:
BKT transition
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Holographic superfluidity

• TheN → ∞ limit: SU(∞) LGT with adj. matter in
d-dimensions
⇔ U(1) invariant XY model ind− 1 dimensions.
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Holographic superfluidity

• TheN → ∞ limit: SU(∞) LGT with adj. matter in
d-dimensions
⇔ U(1) invariant XY model ind− 1 dimensions.

• Arrange adj. matter s.t. critical phenomena prevails in the
continuum of LGT

• Strongly coupled critical phenomena in the ferromagnet⇔
gravity dual of the gauge theory.
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Holographic superfluidity

• TheN → ∞ limit: SU(∞) LGT with adj. matter in
d-dimensions
⇔ U(1) invariant XY model ind− 1 dimensions.

• Arrange adj. matter s.t. critical phenomena prevails in the
continuum of LGT

• Strongly coupled critical phenomena in the ferromagnet⇔
gravity dual of the gauge theory.

“Gravity/Spin-model correspondence"

• Continuous Hawking-Page transitions in gravity⇔
normal-to-superfluid transition in the XY model.
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Holographic superfluidity, cont’ed
Witten ’98, Aharony-Witten ’98
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Holographic superfluidity, cont’ed
Witten ’98, Aharony-Witten ’98

• GR background with Hawking-Page transition:

ds2TG = G0(r)dr
2 +H0(r)dt

2 + I0(r)dK + · · · ; Φ = Φ0(r)

ds2TG = G(r)dr2 +H(r)dt2 + I(r)dK + · · · ; Φ = Φ(r)

dB = 0, Bµν = Brt = const.

A new approach to holographic super-conductors – p.8



Holographic superfluidity, cont’ed
Witten ’98, Aharony-Witten ’98

• GR background with Hawking-Page transition:

ds2TG = G0(r)dr
2 +H0(r)dt

2 + I0(r)dK + · · · ; Φ = Φ0(r)

ds2TG = G(r)dr2 +H(r)dt2 + I(r)dK + · · · ; Φ = Φ(r)

dB = 0, Bµν = Brt = const.

• The topological shift symmetry:
ψ → ψ + const; ψ ≡

∫

M
B

• U(1) symmetry in the winding F-string sector, broken down to
ZN at finite N.
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Holographic superfluidity, cont’ed
Witten ’98, Aharony-Witten ’98

• GR background with Hawking-Page transition:

ds2TG = G0(r)dr
2 +H0(r)dt

2 + I0(r)dK + · · · ; Φ = Φ0(r)

ds2TG = G(r)dr2 +H(r)dt2 + I(r)dK + · · · ; Φ = Φ(r)

dB = 0, Bµν = Brt = const.

• The topological shift symmetry:
ψ → ψ + const; ψ ≡

∫

M
B

• U(1) symmetry in the winding F-string sector, broken down to
ZN at finite N.

• Under the correspondence〈WF 〉gr ⇔ 〈P 〉FT ⇔ |M |eiψ
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Holographic superfluidity, cont’ed
F-string expectation value:WF =

∫

DXµDhab e−
R

(G+iB+Φ̄R(2))

e
R

G = |M | andei
R

B = eiψ
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Holographic superfluidity, cont’ed
F-string expectation value:WF =

∫

DXµDhab e−
R

(G+iB+Φ̄R(2))

e
R

G = |M | andei
R

B = eiψ

x0 M

r rh

Black-hole

M

r

x0

Thermal Gas

Large N⇔ gs → 0:
|M | ∼ 〈WF 〉TG = 0; normal (high T ) phase

|M | ∼ 〈WF 〉BH 6= 0; superfluid (low T ) phase
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Holographic superfluidity, cont’ed
F-string expectation value:WF =

∫

DXµDhab e−
R

(G+iB+Φ̄R(2))

e
R

G = |M | andei
R

B = eiψ

x0 M

r rh

Black-hole

M

r

x0

Thermal Gas

Large N⇔ gs → 0:
|M | ∼ 〈WF 〉TG = 0; normal (high T ) phase

|M | ∼ 〈WF 〉BH 6= 0; superfluid (low T ) phase

On the BH,〈WF 〉BH ∼
∫

Dψ(K)e−Agr[ψ]WF .

• Ford− 1 = 2 fluctuationsδψ IR divergence,〈M〉 = 0

• Ford− 1 > 2 setψ = ψ0, spontaneous breaking of theU(1).
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Holographic superfluidity, cont’ed
F-string expectation value:WF =

∫

DXµDhab e−
R

(G+iB+Φ̄R(2))

e
R

G = |M | andei
R

B = eiψ

x0 M

r rh

Black-hole

M

r

x0

Thermal Gas

Large N⇔ gs → 0:
|M | ∼ 〈WF 〉TG = 0; normal (high T ) phase

|M | ∼ 〈WF 〉BH 6= 0; superfluid (low T ) phase

On the BH,〈WF 〉BH ∼
∫

Dψ(K)e−Agr[ψ]WF .

• Ford− 1 = 2 fluctuationsδψ IR divergence,〈M〉 = 0

• Ford− 1 > 2 setψ = ψ0, spontaneous breaking of theU(1).

δψ : Goldstone mode of the superfluid
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Identification of the symmetries
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Identification of the symmetries

6

T

Tc

Gauge theory Gravity Spin model

Deconf.,U(1)C/ BH, U(1)B/ S.fluid ,U(1)S/

Conf.,U(1)C TG,U(1)B Normal,U(1)S
?

T

T
−1
c
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Identification of the symmetries

6

T

Tc

Gauge theory Gravity Spin model

Deconf.,U(1)C/ BH, U(1)B/ S.fluid ,U(1)S/

Conf.,U(1)C TG,U(1)B Normal,U(1)S
?

T

T
−1
c

Another condition for superfluidity:
Second speedcψ → 0 asT → Tc iff a continuous phase transition

Continuous Hawking-Page⇔ Normal-to-superfluid transition
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Two approaches to GR/SpM correspondence
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Two approaches to GR/SpM correspondence
Top-bottom approach

• Construct theSU(N) LGT with continuous conf-deconf
transition in the continuum

• Construct the dual D-brane set-up

• Take decoupling limit and study the black-brane solution

• Compute thermodynamic observables by bulk objects, critical
exponents by probe strings.
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Two approaches to GR/SpM correspondence
Top-bottom approach

• Construct theSU(N) LGT with continuous conf-deconf
transition in the continuum

• Construct the dual D-brane set-up

• Take decoupling limit and study the black-brane solution

• Compute thermodynamic observables by bulk objects, critical
exponents by probe strings.

Bottom-up approach

• Construct a dilaton-gravity ind+ 1 dimensions with a
continuous HP transition

• Compute observables

The first: a microscopic handle on AdS/CMT

We adopt the latter approach in this talk.
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The model
Dual ofSU(N) g.t., inspired by NCSTU.G., Kiritsis ’07; U.G., Kiritsis, Nitti ’07
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The model
Dual ofSU(N) g.t., inspired by NCSTU.G., Kiritsis ’07; U.G., Kiritsis, Nitti ’07

Action in thestring frame

As = 1
g2sℓ

d−1
s

∫

dd+1x
√−gse−2Φ̄

(

Rs + 4(∂Φ̄)2 + δc
ℓ2s

− 1
12H

2
(3)

)

−
1

2(d+1)!F
2
(d+1) + · · ·
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The model
Dual ofSU(N) g.t., inspired by NCSTU.G., Kiritsis ’07; U.G., Kiritsis, Nitti ’07

Action in thestring frame

As = 1
g2sℓ

d−1
s

∫

dd+1x
√−gse−2Φ̄

(

Rs + 4(∂Φ̄)2 + δc
ℓ2s

− 1
12H

2
(3)

)

−
1

2(d+1)!F
2
(d+1) + · · ·

ReplaceF(d+1) in the action by the solutionF(d+1) ∼ Nǫ(d+1)F (Φ)

Define therescaled dilatonΦ = Φ̄ + logN

Action in theEinstein framegs,µν = e
4Φ

d−1 gµν :
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The model
Dual ofSU(N) g.t., inspired by NCSTU.G., Kiritsis ’07; U.G., Kiritsis, Nitti ’07

Action in thestring frame

As = 1
g2sℓ

d−1
s

∫

dd+1x
√−gse−2Φ̄

(

Rs + 4(∂Φ̄)2 + δc
ℓ2s

− 1
12H

2
(3)

)

−
1

2(d+1)!F
2
(d+1) + · · ·

ReplaceF(d+1) in the action by the solutionF(d+1) ∼ Nǫ(d+1)F (Φ)

Define therescaled dilatonΦ = Φ̄ + logN

Action in theEinstein framegs,µν = e
4Φ

d−1 gµν :

A = N2

g2sℓ
d−1
s

∫

dd+1x
√−g

(

Rs − 4
d−1(∂Φ)2 + V (Φ) · · ·

)

Dilaton potentialV (Φ): a phenomenological input; contains infor-

mation on the gauge theory (matter content, beta-function,etc.)
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Continuous Hawking-Page transition
U.G. arXiv:1007.0500V (Φ) = V∞e

4
d−1

Φ (1 + Vsub(Φ)) ; as Φ ≫ 1

A continuous phase transitionδF (Tc) = 0, δS(Tc) = 0 at a finite

critical temperatureTc =
√
V∞
4π .
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Continuous Hawking-Page transition
U.G. arXiv:1007.0500V (Φ) = V∞e

4
d−1

Φ (1 + Vsub(Φ)) ; as Φ ≫ 1

A continuous phase transitionδF (Tc) = 0, δS(Tc) = 0 at a finite

critical temperatureTc =
√
V∞
4π .

• nth order transition forVsub(Φ) = e−
2

n−1
Φ,

• BKT scaling forVsub(Φ) = Φ−α.
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Continuous Hawking-Page transition
U.G. arXiv:1007.0500V (Φ) = V∞e

4
d−1

Φ (1 + Vsub(Φ)) ; as Φ ≫ 1

A continuous phase transitionδF (Tc) = 0, δS(Tc) = 0 at a finite

critical temperatureTc =
√
V∞
4π .

• nth order transition forVsub(Φ) = e−
2

n−1
Φ,

• BKT scaling forVsub(Φ) = Φ−α.

We focus on the cased− 1 = 2, 3 andn = 2 in this talk: For

example in 3DV = V∞e
4
3
Φ
(

1 + 2e2Φ0e−2Φ
)
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Continuous Hawking-Page transition
U.G. arXiv:1007.0500V (Φ) = V∞e

4
d−1

Φ (1 + Vsub(Φ)) ; as Φ ≫ 1

A continuous phase transitionδF (Tc) = 0, δS(Tc) = 0 at a finite

critical temperatureTc =
√
V∞
4π .

• nth order transition forVsub(Φ) = e−
2

n−1
Φ,

• BKT scaling forVsub(Φ) = Φ−α.

We focus on the cased− 1 = 2, 3 andn = 2 in this talk: For

example in 3DV = V∞e
4
3
Φ
(

1 + 2e2Φ0e−2Φ
)

An analytic kink
solution fromasymptotically AdSat r = 0, Φ = Φ0 to linear-dilaton
at r → ∞, Φ → ∞:

ds2 = e−
4
3
Φ0

cosh
2
3 (3r

2ℓ )

sinh2(3r
2ℓ )

(

dt2 + dx2
d−1 + dr2

)

,

eΦ(r) = eΦ0 cosh(
3r

2ℓ
).
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Thermodynamics

U.G. arXiv:1007.0500A second order transition between thethermal gas
and theblack holeat rh = ∞, φh = ∞:

1

r
h

T

rh

Tc

F(T)

T
Tc

A new approach to holographic super-conductors – p.14



Thermodynamics

U.G. arXiv:1007.0500A second order transition between thethermal gas
and theblack holeat rh = ∞, φh = ∞:

1

r
h

T

rh

Tc

F(T)

T
Tc

• No latent heatδF (Tc) = 0, δS(Tc) = 0

• Discontinuous specific heat∆Cv(T )

• Speed of density waves discontinuousc2s = S/Cv
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Thermodynamics

U.G. arXiv:1007.0500A second order transition between thethermal gas
and theblack holeat rh = ∞, φh = ∞:

1

r
h

T

rh

Tc

F(T)

T
Tc

• No latent heatδF (Tc) = 0, δS(Tc) = 0

• Discontinuous specific heat∆Cv(T )

• Speed of density waves discontinuousc2s = S/Cv

• Universality in the bulk viscosity: ξ
s

∣

∣

∣

∣

Tc

= 1
2π(d−1) .
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Large N and string loops

• Boundary value of the dilaton̄Φ0

• TakeΦ̄0 → −∞,N → ∞ such thateΦ̄0N = eΦ0 = const.

• String-loop counting:

e−
1
4π

R

M

√
hR(2)Φ̄ = N2(1−g)e−

1
4π

R

M

√
hR(2)Φ

• As long as
∫

M

√
hR(2)Φ is finite string-perturbation expansion

well defined

• In the large N limit it is dominated by the sphere diagrams.
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Higher derivative corrections
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Higher derivative corrections

• Expectation:strong correlations⇔ α′ corrections suppressed

• The correlation lengthξ ∼ t−ν → ∞ nearTc

• Indeedα′Rs ∼ e−2Φh ⇔ Two-derivative theory becomes exact
asT → Tc.
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Higher derivative corrections

• Expectation:strong correlations⇔ α′ corrections suppressed

• The correlation lengthξ ∼ t−ν → ∞ nearTc

• Indeedα′Rs ∼ e−2Φh ⇔ Two-derivative theory becomes exact
asT → Tc.

• In the same regime1 ≪ Φ ≪ Φh the solution becomesexactly
linear-dilatonin the string-frame:

ds2s =
(

1 + O(e−
√
V∞r)

)

(

dt2 + dx2
d−1 + dr2

)

,

Φ(r) =

√
V∞
2

r + O(e−
√
V∞r).

for large1 ≪ r ≪ rh.
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Higher derivative corrections

• Expectation:strong correlations⇔ α′ corrections suppressed

• The correlation lengthξ ∼ t−ν → ∞ nearTc

• Indeedα′Rs ∼ e−2Φh ⇔ Two-derivative theory becomes exact
asT → Tc.

• In the same regime1 ≪ Φ ≪ Φh the solution becomesexactly
linear-dilatonin the string-frame:

ds2s =
(

1 + O(e−
√
V∞r)

)

(

dt2 + dx2
d−1 + dr2

)

,

Φ(r) =

√
V∞
2

r + O(e−
√
V∞r).

for large1 ≪ r ≪ rh.

• The continuous HP transition should be governed by a
linear-dilaton CFT on the world-sheet!
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Second speed of sound
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Second speed of sound

• Landau theory: fluctuations of the order parameter|M |eiψ
FL ∝

∫

|M |2(∂δψ)2 + · · ·
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Second speed of sound

• Landau theory: fluctuations of the order parameter|M |eiψ
FL ∝

∫

|M |2(∂δψ)2 + · · ·
• Second sound vanishes asc2ψ ∼ |M |2 ∼ (Tc − T )2β
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Second speed of sound

• Landau theory: fluctuations of the order parameter|M |eiψ
FL ∝

∫

|M |2(∂δψ)2 + · · ·
• Second sound vanishes asc2ψ ∼ |M |2 ∼ (Tc − T )2β

• Gravity/Spin-Model correspondence:FL ⇔ Agr on-shell, at
large N
Expect mean-field scalingc2ψ ∼ (Tc − T ).
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Second speed - gravity computation
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Second speed - gravity computation

• Equate the Landau free energy and theregulatedon-shell
action:
FL(T ) = ∆A(T ) = ABH(T ) −ATG(T )
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Second speed - gravity computation

• Equate the Landau free energy and theregulatedon-shell
action:
FL(T ) = ∆A(T ) = ABH(T ) −ATG(T )

• Associateδψ with fluctuations of the B-field:ψ =
∫

M
B
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Second speed - gravity computation

• Equate the Landau free energy and theregulatedon-shell
action:
FL(T ) = ∆A(T ) = ABH(T ) −ATG(T )

• Associateδψ with fluctuations of the B-field:ψ =
∫

M
B

• One findsc2ψ ∝ e−
√
V∞rh ∼ (T − Tc).

• Second sound indeed vanishes atTc with the mean-field
exponent!
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Critical exponents from probe strings
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Critical exponents from probe strings

• Identification:〈~m(x)〉 ⇔ 〈P [x]〉 ⇔ e−SF1

• Forψ = 0, ~m = mxx̂ thusmx ∼ ReP
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Critical exponents from probe strings

• Identification:〈~m(x)〉 ⇔ 〈P [x]〉 ⇔ e−SF1

• Forψ = 0, ~m = mxx̂ thusmx ∼ ReP

• More generally, in the superfluid (BH) phase~m = |~m|~v then
m‖ ∼ Reψ,m⊥ ∼ Imψ.
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Critical exponents from probe strings

• Identification:〈~m(x)〉 ⇔ 〈P [x]〉 ⇔ e−SF1

• Forψ = 0, ~m = mxx̂ thusmx ∼ ReP

• More generally, in the superfluid (BH) phase~m = |~m|~v then
m‖ ∼ Reψ,m⊥ ∼ Imψ.

• For the two-point function:
〈mi(x) mj(0)〉 =

〈~m‖(x) · ~m‖(0)〉vivj + 〈~m⊥(x) · ~m⊥(0)〉(δij − vivj).
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Critical exponents from probe strings

• Identification:〈~m(x)〉 ⇔ 〈P [x]〉 ⇔ e−SF1

• Forψ = 0, ~m = mxx̂ thusmx ∼ ReP

• More generally, in the superfluid (BH) phase~m = |~m|~v then
m‖ ∼ Reψ,m⊥ ∼ Imψ.

• For the two-point function:
〈mi(x) mj(0)〉 =

〈~m‖(x) · ~m‖(0)〉vivj + 〈~m⊥(x) · ~m⊥(0)〉(δij − vivj).

〈~m‖ · ~m‖〉 ∝ 〈RePReP 〉
〈~m⊥ · ~m⊥〉 ∝ 〈ImPImP 〉
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One-point function: classical computation

|~m| ⇔ |〈P 〉| ⇔ 〈e
R

G+ΦR〉
• In the normal (thermal gas) phase|~m| = 0

• In the superfluid (black-hole) phase|~m| 6= 0
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Classical computation:
For ℓ/ℓs ≫ 1 calculate on the saddle-string solution
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One-point function: classical computation

|~m| ⇔ |〈P 〉| ⇔ 〈e
R

G+ΦR〉
• In the normal (thermal gas) phase|~m| = 0

• In the superfluid (black-hole) phase|~m| 6= 0

Classical computation:
For ℓ/ℓs ≫ 1 calculate on the saddle-string solution
Regulate the actionSreg ∝

∫ rh
ǫ
G+ ΦR

Renormalization only affects the sub-leading terms asrh → ∞
Dilaton piece is finite:Φ ∼ rh, R ∼ e−

√
V∞rh

One findsSreg = 1
2πℓsT (rh)

∫ rh
ǫ
e2As(rh)dr

which gives|~m| = (Tc − T )
2

V∞ℓ2s
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One-point function: classical computation

|~m| ⇔ |〈P 〉| ⇔ 〈e
R

G+ΦR〉
• In the normal (thermal gas) phase|~m| = 0

• In the superfluid (black-hole) phase|~m| 6= 0

Classical computation:
For ℓ/ℓs ≫ 1 calculate on the saddle-string solution
Regulate the actionSreg ∝

∫ rh
ǫ
G+ ΦR

Renormalization only affects the sub-leading terms asrh → ∞
Dilaton piece is finite:Φ ∼ rh, R ∼ e−

√
V∞rh

One findsSreg = 1
2πℓsT (rh)

∫ rh
ǫ
e2As(rh)dr

which gives|~m| = (Tc − T )
2

V∞ℓ2s

Mean-field result onlyV∞ = 4
ℓ2s
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One-point function: full path integral
Valid for anyℓ/ℓs
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One-point function: full path integral
Valid for anyℓ/ℓs
Division of paths:r ∈ (0, rm) UV, r ∈ (rm, rh) IR

τ

rm

rh

τ
m

c
m=3

cm=1
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One-point function: full path integral
Valid for anyℓ/ℓs
Division of paths:r ∈ (0, rm) UV, r ∈ (rm, rh) IR

τ

rm

rh

τ
m

c
m=3

cm=1

For rh → ∞ andrm large enough, the IR region governed by the
linear-dilaton CFT.
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One-point function: full path integral
Valid for anyℓ/ℓs
Division of paths:r ∈ (0, rm) UV, r ∈ (rm, rh) IR

τ

rm

rh

τ
m

c
m=3

cm=1

For rh → ∞ andrm large enough, the IR region governed by the
linear-dilaton CFT.
〈Ψi|Ψf 〉 =

∫

dXµ
m(σ)

∫

i,m
DXµe−S[X]

∫

m,f
DXµe−S[X]

rh dependence of〈ΨiΨf 〉 determined by the IR path-integrals:

M(rh) ∼ PI(τm,∞) approximated by thelinear-dilaton CFT.
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Linear-dilaton CFT

• Stress-energy tensorT (z) = − 1
α′ : ∂Xµ∂Xµ : +vµ∂

2Xµ

with vµ =
√
V∞
2 δµ,r ≡ m0δµ,r

• Spectrum:Tachyon ford+ 1 > 2; Graviton, dilaton and B-field
fluctuations (massless); etc.

• Action: AIR =
1

4πα′

∫ 2π
0 dσ

∫∞
τm
dτ
√

ĥ
[

ĥab∂aX
µ∂bX

νηµν + α′

4 vµX
µR̂
]

.
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One-point function cont’ed
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One-point function cont’ed
The IR path-integral in the Hamiltonian language:
PIIR =

∑

χ∈H⊥
〈Vχ(Xm, τm)V ∗

χ (Xf ,∞)〉∆IR(χ)

The propagator of a stateχ(pr, p⊥, k, w,N, Ñ):

∆IR(χ) =
∫

|z|<1
d2z
|z|2 z

L0(χ)−1z̄L̃0(χ)−1,

The vertex operatorV ∗
χ (Xf ,∞) = e−iprrh(· · ·),
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One-point function cont’ed
The IR path-integral in the Hamiltonian language:
PIIR =

∑

χ∈H⊥
〈Vχ(Xm, τm)V ∗

χ (Xf ,∞)〉∆IR(χ)

The propagator of a stateχ(pr, p⊥, k, w,N, Ñ):

∆IR(χ) =
∫

|z|<1
d2z
|z|2 z

L0(χ)−1z̄L̃0(χ)−1,

The vertex operatorV ∗
χ (Xf ,∞) = e−iprrh(· · ·),

One findsPIIR ∼
∑

χCχe
−ip∗r(χ)rh with

p∗r = −im0

(

1 +

√

1 +
m2∗(χ)

m2
0

)

,

m2
∗ ≡ 2

α′

(

N + Ñ − 2
)

+ p2
⊥ + (2πkT )2 +

( w

2πTα′

)2
.

and level matchingkw +N − Ñ = 0.
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Mean-field scaling from the Tachyon

On the tachyon state:1 + m2
∗

m2
0

= 1−d
25−d . real contribution to exponent;

higher states: imaginary contribution.
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Mean-field scaling from the Tachyon

On the tachyon state:1 + m2
∗

m2
0

= 1−d
25−d . real contribution to exponent;

higher states: imaginary contribution.
Therh dependence of the one-point function:

|~m| → e−m0rh ∝ (T − Tc)
1
2 .
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Mean-field scaling from the Tachyon

On the tachyon state:1 + m2
∗

m2
0

= 1−d
25−d . real contribution to exponent;

higher states: imaginary contribution.
Therh dependence of the one-point function:

|~m| → e−m0rh ∝ (T − Tc)
1
2 .

Mean-field scaling arise from the full computation!
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Two-point function: classical computation
Three classical saddles:

X1

r

L

0

r
h

X1

r

L

0

r
h

r
f

X1

r

L

0

r
h

(a) (b) (c)
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Two-point function: classical computation
Three classical saddles:

X1

r

L

0

r
h

X1

r

L

0

r
h

r
f

X1

r

L

0

r
h

(a) (b) (c)

(a) 〈~m(L) · ~m(0)〉a = |~m|2. Finite in BH, 0 for TG.
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Two-point function: classical computation
Three classical saddles:

X1

r

L

0

r
h

X1

r

L

0

r
h

r
f

X1

r

L

0

r
h

(a) (b) (c)

(a) 〈~m(L) · ~m(0)〉a = |~m|2. Finite in BH, 0 for TG.

(b) SF1 → mTL+ · · ·, asT → Tc wheremT = 1
2πℓ2sTc

〈~m(L) · ~m(0)〉b ∼ e−mTL+··· for L≫ 1.
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Bulk exchange diagrams

〈~m‖(L) · ~m‖(0)〉c ∝ 〈ReP [L]ReP [0]〉 ∼ e−m+L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉c ∝ 〈ImP [L]ImP [0]〉 ∼ e−m−L

Ld−3
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Bulk exchange diagrams

〈~m‖(L) · ~m‖(0)〉c ∝ 〈ReP [L]ReP [0]〉 ∼ e−m+L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉c ∝ 〈ImP [L]ImP [0]〉 ∼ e−m−L

Ld−3

m+ minimum of theCT+ modes:Gµν ,Φ, · · ·
m− minimum of theCT− modes:Bµν , · · ·
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Bulk exchange diagrams

〈~m‖(L) · ~m‖(0)〉c ∝ 〈ReP [L]ReP [0]〉 ∼ e−m+L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉c ∝ 〈ImP [L]ImP [0]〉 ∼ e−m−L

Ld−3

m+ minimum of theCT+ modes:Gµν ,Φ, · · ·
m− minimum of theCT− modes:Bµν , · · ·
Spectrum analysisU.G., Kiritsis, Nitti ’07: CT+ bounded from below for
any T.
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Bulk exchange diagrams

〈~m‖(L) · ~m‖(0)〉c ∝ 〈ReP [L]ReP [0]〉 ∼ e−m+L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉c ∝ 〈ImP [L]ImP [0]〉 ∼ e−m−L

Ld−3

m+ minimum of theCT+ modes:Gµν ,Φ, · · ·
m− minimum of theCT− modes:Bµν , · · ·
Spectrum analysisU.G., Kiritsis, Nitti ’07: CT+ bounded from below for
any T.
CT− include a zero-mode:m− = 0 asψ =

∫

M
B is modulus:

Goldstone mode!
Correct qualitative behavior:〈~m‖(L) · ~m‖(0)〉 ∼ e−m+L+e−mT L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉 ∼ 1
Ld−3
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Bulk exchange diagrams

〈~m‖(L) · ~m‖(0)〉c ∝ 〈ReP [L]ReP [0]〉 ∼ e−m+L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉c ∝ 〈ImP [L]ImP [0]〉 ∼ e−m−L

Ld−3

m+ minimum of theCT+ modes:Gµν ,Φ, · · ·
m− minimum of theCT− modes:Bµν , · · ·
Spectrum analysisU.G., Kiritsis, Nitti ’07: CT+ bounded from below for
any T.
CT− include a zero-mode:m− = 0 asψ =

∫

M
B is modulus:

Goldstone mode!
Correct qualitative behavior:〈~m‖(L) · ~m‖(0)〉 ∼ e−m+L+e−mT L

Ld−3

〈~m⊥(L) · ~m⊥(0)〉 ∼ 1
Ld−3

Precisely the expected behavior from the XY model,

Except thatξ−1
‖ → min(mT ,m+) stays finite asT → Tc.
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Semi-classical computation in the TG phase
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Semi-classical computation in the TG phase
(a) Disconnected and (c) Bulk exchange diagrams vanish
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Semi-classical computation in the TG phase
(a) Disconnected and (c) Bulk exchange diagrams vanish
(b) Connected paths:

X1

r

L

0

r
h

IR CFT

χ

Ψ
f

Ψ
i

Ii

If
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Semi-classical computation in the TG phase
(a) Disconnected and (c) Bulk exchange diagrams vanish
(b) Connected paths:

X1

r

L

0

r
h

IR CFT

χ

Ψ
f

Ψ
i

Ii

If

Propagator in the IR:∆IR(χ) ∼
∫

dprd
d−2p⊥e−ip

∗
x(χ)L
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Semi-classical computation cont’ed
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Semi-classical computation cont’ed

On-shell momentapx for a winding modew = 1:
p∗x =

−i
(

2
α′

(

N + Ñ − 2
)

+ p2
⊥ + p2

r + 2im0pr + (2πkT )2 +
(

1
2πTα′

)2
)

1
2 ,
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Semi-classical computation cont’ed

On-shell momentapx for a winding modew = 1:
p∗x =

−i
(

2
α′

(

N + Ñ − 2
)

+ p2
⊥ + p2

r + 2im0pr + (2πkT )2 +
(

1
2πTα′

)2
)

1
2 ,

One findsξ(T )−1 = ip∗x(χ)min. Minimum mode is the “winding
tachyon”:

ξ =
(

− 4
α′ +

(

1
2πTα′

)2
)− 1

2
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Semi-classical computation cont’ed

On-shell momentapx for a winding modew = 1:
p∗x =

−i
(

2
α′

(

N + Ñ − 2
)

+ p2
⊥ + p2

r + 2im0pr + (2πkT )2 +
(

1
2πTα′

)2
)

1
2 ,

One findsξ(T )−1 = ip∗x(χ)min. Minimum mode is the “winding
tachyon”:

ξ =
(

− 4
α′ +

(

1
2πTα′

)2
)− 1

2

Indeed diverges ifidentify the transition with the Hagedorn
temperature a la Atick-Witten

Tc = 1
4πℓs

andξ → ℓs
2
√

2

(

T−Tc

Tc

)− 1
2
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Semi-classical computation cont’ed

On-shell momentapx for a winding modew = 1:
p∗x =

−i
(

2
α′

(

N + Ñ − 2
)

+ p2
⊥ + p2

r + 2im0pr + (2πkT )2 +
(

1
2πTα′

)2
)

1
2 ,

One findsξ(T )−1 = ip∗x(χ)min. Minimum mode is the “winding
tachyon”:

ξ =
(

− 4
α′ +

(

1
2πTα′

)2
)− 1

2

Indeed diverges ifidentify the transition with the Hagedorn
temperature a la Atick-Witten

Tc = 1
4πℓs

andξ → ℓs
2
√

2

(

T−Tc

Tc

)− 1
2

Mean-field scaling again!
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Semi-classical computation in the BH phase
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Semi-classical computation in the BH phase

(c) Connected diagrams: againξ ∝
(

Tc−T
Tc

)− 1
2
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Semi-classical computation in the BH phase

(c) Connected diagrams: againξ ∝
(

Tc−T
Tc

)− 1
2

(b) Bulk exchange diagrams:winding not conserved, minimum
modesw = 0:
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Semi-classical computation in the BH phase

(c) Connected diagrams: againξ ∝
(

Tc−T
Tc

)− 1
2

(b) Bulk exchange diagrams:winding not conserved, minimum
modesw = 0:
Real part: A unitary contribution from the Tachyon fluctuations
for d− 1 = 2, 3 ONLY for second order transitions.
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Semi-classical computation in the BH phase

(c) Connected diagrams: againξ ∝
(

Tc−T
Tc

)− 1
2

(b) Bulk exchange diagrams:winding not conserved, minimum
modesw = 0:
Real part: A unitary contribution from the Tachyon fluctuations
for d− 1 = 2, 3 ONLY for second order transitions.
Imaginary part: Zero-mode of the B-field is Goldstone:
〈~m⊥(L) · ~m⊥(0)〉 ∼ 1

Ld−3

A new approach to holographic super-conductors – p.29
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XY model in 2D

• No conventional long-range order in 2D〈|~m|〉 = 0 at any T.
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XY model in 2D

• No conventional long-range order in 2D〈|~m|〉 = 0 at any T.

• Topological order through liberation of vortex-anti-vortex pairs
(BKT).
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XY model in 2D

• No conventional long-range order in 2D〈|~m|〉 = 0 at any T.

• Topological order through liberation of vortex-anti-vortex pairs
(BKT).

• Expectation from condensed matter:

(*) One-point:〈v(x)〉TG = 〈v(x)〉BH = 0
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XY model in 2D

• No conventional long-range order in 2D〈|~m|〉 = 0 at any T.

• Topological order through liberation of vortex-anti-vortex pairs
(BKT).

• Expectation from condensed matter:

(*) One-point:〈v(x)〉TG = 〈v(x)〉BH = 0

(*) Two-point in the super-fluid phase:〈v̄(L)v(0)〉BH ∼ 1
Lp(T )

(as opposed to exponential suppression ford− 1 > 2)

(*) Two-point in the normal phase:〈v̄(L)v(0)〉TG ∼ e−mL

plasma of vortex anti-vortex pairs.

A new approach to holographic super-conductors – p.30



D-strings and vortices
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D-strings and vortices

• Propose to identify vortices with D-strings, inspired by
magnetic quark analogy:v ⇔ eSD1
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D-strings and vortices

• Propose to identify vortices with D-strings, inspired by
magnetic quark analogy:v ⇔ eSD1

• Charge of D-strings⇔ vortex charge: Infinite energy
configuration ifND 6= ND̄ ria Indeed
〈v(x)〉TG = 〈v(x)〉BH = 0
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D-strings and vortices

• Propose to identify vortices with D-strings, inspired by
magnetic quark analogy:v ⇔ eSD1

• Charge of D-strings⇔ vortex charge: Infinite energy
configuration ifND 6= ND̄ ria Indeed
〈v(x)〉TG = 〈v(x)〉BH = 0

• Expected qualitative behavior also for the two-point function.

A new approach to holographic super-conductors – p.31
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Summary

• A general connection between gravity and spin-models.
Two-derivative approximation expected to hold nearTc.
Normal-to-superfluid transition⇔ continuous HP in GR.
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• Role of large N clarified: number of spin-states at a site in case
of SU(N).
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Summary

• A general connection between gravity and spin-models.
Two-derivative approximation expected to hold nearTc.
Normal-to-superfluid transition⇔ continuous HP in GR.

• Role of large N clarified: number of spin-states at a site in case
of SU(N).

• A specific case:SU(N) at large N⇔ XY-type models.

• Physics aroundTc governed by linear-dilaton CFT.

• Probe strings⇔ spin fluctuations

• Scaling in second sound and other critical exponentsβ andν
from GR as expected.
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Summary

• A general connection between gravity and spin-models.
Two-derivative approximation expected to hold nearTc.
Normal-to-superfluid transition⇔ continuous HP in GR.

• Role of large N clarified: number of spin-states at a site in case
of SU(N).

• A specific case:SU(N) at large N⇔ XY-type models.

• Physics aroundTc governed by linear-dilaton CFT.

• Probe strings⇔ spin fluctuations

• Scaling in second sound and other critical exponentsβ andν
from GR as expected.

• D-strings as vortices

A new approach to holographic super-conductors – p.32
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Outlook

• Top-down approach to AdS/CMT: D-brane constructions,
embedding incritical string theory
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• Corrections to critical exponents:1/N corrections? beyond the
semi-classical approximation?
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Outlook

• Top-down approach to AdS/CMT: D-brane constructions,
embedding incritical string theory

• Corrections to critical exponents:1/N corrections? beyond the
semi-classical approximation?

• A qualitative model based on winding-tachyon:
Aeff ∼
∫

e−2Φ
(

R+ 1
2(∂Φ)2 + V (Φ) + 1

2 |DT |2 − 1
2m

2
T |T |2 + F 2

)
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Outlook

• Top-down approach to AdS/CMT: D-brane constructions,
embedding incritical string theory

• Corrections to critical exponents:1/N corrections? beyond the
semi-classical approximation?

• A qualitative model based on winding-tachyon:
Aeff ∼
∫

e−2Φ
(

R+ 1
2(∂Φ)2 + V (Φ) + 1

2 |DT |2 − 1
2m

2
T |T |2 + F 2

)

• Generalization to other spin models e.g. discrete center:
3D Ising model from the GR dulal of large-NSp(N)?
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Outlook

• Top-down approach to AdS/CMT: D-brane constructions,
embedding incritical string theory

• Corrections to critical exponents:1/N corrections? beyond the
semi-classical approximation?

• A qualitative model based on winding-tachyon:
Aeff ∼
∫

e−2Φ
(

R+ 1
2(∂Φ)2 + V (Φ) + 1

2 |DT |2 − 1
2m

2
T |T |2 + F 2

)

• Generalization to other spin models e.g. discrete center:
3D Ising model from the GR dulal of large-NSp(N)?

• Spin-models with non-Abelian spin symmetry e.g.O(3)?
Enhanced symmetries at special temporal radii?
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THANK YOU !
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