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Motivation

The AdS/CFT correspondence is a powerful tool to study
strongly coupled (conformal) quantum field theories

Recent interest in application to Condensed Matter Theory

One focus has been on systems with strongly coupled
“quantum critical points” - phase transition at zero
temperature

Another focus: superconductivity
[Gubser; Hartnoll, Herzog, Horowitz]



Non-relativistic critical points

Some Condensed Matter points non-isotropic scaling
invariance

t → λz t, xi → λxi , z 6= 1

where z is the dynamical exponent
Lifshitz scaling symmetry with dual geometry
[Kachru, Liu, Mulligan]

ds2 = −r2z dt2 + r2 dxidxi +
dr2

r2

t → λz t, xi → λxi , r → λ−1r



Non-relativistic critical points

Schrödinger symmetry with dual geometry
[Son; Balasubramanian, McGreevy]

ds2 = −r2z dt2 + r2 (2dξdt + dxidxi ) +
dr2

r2

t → λz t, xi → λxi , r → λ−1r , ξ → λ2−zξ

Where the extra coordinate ξ gives

∂ξ →
−t∂i + xi ∂ξ →

dual to particle number
dual to non-relativistic boosts

For z = 2 there is also special conformal transformations
(Schrödinger algebra)
For both the above geometries we would also like to construct
black holes asymptoting to them describing the dual field
theory at finite temperature



Bottom Up

Most work has been carried out in “Bottom Up” models. Find
solutions in a simple theory of gravity with a few additional degrees
of freedom (vector, a few scalars)

Advantages:
Simple to construct
Models should (could) exist in string landscape
Could capture universal behaviour

Disadvantages:
Does the model arise in string theory? Is there a well defined
dual CFT?
Viewing a phenomenological model as an approximation to a
model to be found in string theory low temperature behavior
might not be captured



Top Down

In the alternative approach of “Top Down” explicit solutions are
constructed in d = 10 or d = 11 supergravity

Advantages:
One is studying bone-fide dual field theories - not all bottom
up models might be realized
One can study small parts of the landscape of solutions

Disadvantages:
Hard in general!
Solutions might not be of direct physical relevance

We have been pursuing Top Down constructions



Bottom Up constructions (Lifshitz)

First Bottom Up model used vector + 2-form with topological
coupling [Kachru, Liu, Mulligan]

Equivalently a (time-like) vector can also be used [M. Taylor]

S =
∫

dd+1x
√
−g

(
R + Λ− 1

4
(
F 2 + m2A2))

ds2 =
1
β2

dr2

r2 − r2z dt2 + r2 dx · dx

A =
√

z − 1
2

r z dt

z =m2/
(
4β2) , β2 = Λ/

(
z2 + z + 4

)
Proposed to study strange metallic holography [Hartnoll,
Polchinski, Silverstein, Tong]



Bottom Up constructions (Lifshitz)

In the presence of a charged complex scalar under a U(1) gauge
symmetry (Abelian Higgs model) the mass of the vector can be
more “dynamical” [Gubser, Nellore]

S =
∫

d4x
√
−g

[
R − 1

4
F 2

µν −
∣∣(∂µ − ıqAµ

)
ψ
∣∣2 − V (ψ, ψ∗)

]
ds2 =− r2z dt2 + r2 (dx2

1 + dx2
2
)
+

1
L2

dr2

r2

A =v r zdt2

ψ =ψ0 6= 0

Proposed to describe the IR limit of superconductor ground
states at finite chemical potential and T = 0
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Schrödinger Solutions

First examples were Bottom Up

First Top Down constructions used either duality
transformations and/or consistent KK truncations. [Maldacena,
Martelli, Tachikawa] [Adam, Balasubramanian, McGreevy] [Herzog,
Rangamani, Ross]

Led to infinite families of supersymmetric solutions [Yoshida,
Hartnoll] [AD, J. P. Gauntlett]

Type IIB: Uses d = 5 (Sasaki)-Einstein spaces to construct
solutions dual to d = 3 field theories with Sch(z) symmetry
and z ≥ 3/2

d = 11: Uses d = 7 (Sasaki)-Einstein spaces to construct
solutions dual to d = 2 field theories with Sch(z) symmetry
and z ≥ 5/4



Lifshitz Solutions

Bottom Up examples are well studied

Top Down: Can they be realised in String/M-theory?

[Li, Nishiola, Takayanagi][Bladäck, Danielsson, Van Riet]: No-go
theorem for SUGRA solutions

[Hartnoll, Polchinski, Silverstein, Tong]: Three constructions but all
implicit/schematic

[AD, J. P. Gauntlett]: New results

Infinite Lif3(z = 2) solutions of Type IIB and d = 11 SUGRA
Infinite Lif2(z = 2) solutions of d = 11 SUGRA

[AD, J. P. Gauntlett, N. Kim, O. Varela]

Single Lif3(z ≈ 39) solution of d = 11 SUGRA



Sch (z) solutions in type IIB and d = 11 SUGRA

A general class of solutions of the type IIB e.o.m.
ds2

10 =Φ−
1
2

[
2dx+dx− + hdx+2 + 2Cdx+ + dx2

]
+ Φ

1
2 ds2 (M6)

F5 =dx+ ∧ dx− ∧ dx1 ∧ dx2 ∧ dΦ−1 + ∗M6dΦ

− dx+ ∧
[
∗M6dC + d

(
Φ−1C

)
∧ dx1 ∧ dx2

]
G =dx+ ∧W
P1 =g dx+

is a solution of the type IIB equations of motion as long as M6 is
Ricci flat and Φ, h, W are defined on M6 and also depend on x+

while g depends only on x+

∇2
M6

Φ = 0
d ∗M6 dC = 0

dW =0, d ∗M6 W = 0

∇2
M6

h =− |W |2M6
− 4g2Φ



In general two kinematical supersymmetries are preserved by
choosing M6 to be CY and W (1, 1)+(0, 2) and primitive
After fixing the choice of W the function h is fixed up to a
harmonic function on M6

Supersymmetry is enhanced to include dynamical
supersymmetries and also superconformal for the case z = 2
after a unique choice of h
For scale invariant solutions we restrict to the case of a cone

ds2 (M6) = dr2 + r2ds2 (E5)

with E5 an Einstein manifold.
For supersymmetry if M6 is CY then E5 is Sasaki-Einstein
We are also interested in the case where Φ = r−4



We take h = r2z−2f and W = d (r zω) where f and ω are
defined on the Einstein space E5

With these choices

ds2
10 = r2 [2 dx−dx+ + dx2

1 + dx2
2
]
+ r2z f dx+2 + dr2

r2 + ds2 (E5)

4ω = z (z + 2) ω, d †ω = 0
2E f + 4

(
z2 − 1

)
f = −z2 |ω|2 − |dω|2

The above eigenvalue problem allows for
ω = 0, z ≥ 3/2
ω 6= 0, z ≥ 2
z = 2 when ω is dual to a Killing vector



Lif (z = 2) solutions in IIB and d = 11

To construct Lifshitz invariant solutions we take h = r−2f
Take x− = t to be the time coordinate

ds2
10 = r2 [2 dx+dt + dx2

1 + dx2
2
]
+

dr2

r2 + f dx+2 + ds2 (E5)

With this choice we need to satisfy

dW = 0, d ∗E W = 0
−2E f + 4f − 4 |g |2 − |W |2E = 0

Notice that f is unique (No regular solution to the
homogeneous equation)
In this case x+ becomes spatial if f > 0 but t is null →
perform T-duality along x+ and uplift to d = 11



In eleven dimensions the metric reads

ds2
11 = f 1/3

[
− r4

f
dt2 + r2

(
dx2

1 + dx2
2

)
+

dr2

r2

]
+f −2/3

[
Dy2

1 + Dy2
2

]
+ f 1/3 ds2 (E5)

F4 = dt ∧ d
(

r4 dx1 ∧ dx2 −
r2

f
Dy1 ∧Dy2

)
Dyi = dyi − A(i)

with W = dA(1) + ı dA(2)

For the special choice where E5 = Y pq we constructed regular
solutions with f > 0
E5 needs to have a two-cycle for a regular W to exist
For Y pq (or Labc) the topology is S2 × S3. Non-trivial
fibration of an S1 leads to Lif (z = 2)× S1 × S3 × S3



Rewriting in a SUSY friendly form [Guantlett, Pakis]

ds2
11 =− ∆2dt2 + ∆−1

[
H−1

1

(
dx2

1 + dx2
2

)
+ H−1

2

(
Dχ2

1 + Dχ2
2

)
+ ds2 (CY3)

]
G4 =dt ∧ d

[
JSU(5)

]
∆ =H−1/3

1 H−1/3
2 , dDχi = −Wi

JSU(5) =H−1
1 dx1 ∧ dx2 + H−1

2 Dχ1 ∧Dχ2 + JCY

ΩSU(5) =H−1/2
1 H−1/2

2 (dx1 + ıdx2) ∧ (Dχ1 + ıDχ2) ∧ΩCY

For the above (electric) ansatz the torsion conditions

d
(

∆−3J4
SU(5)

)
=0

d
(

∆−3/2ΩSU(5)

)
=0

imply

∇2
CY H1 =0

∇2
CY H2 =− |W |2 , W = W1 + ıW2



KK reduction for E5 = T (1,1)

The case of T (1,1) gives f = 1 and can be used to perform a KK
reduction down to d = 4. A (minimal) consistent reduction ansatz
is

ds2
11 =e−2(φ−T )

[
ds2

4 + e−2T (dσ +A)2 +
1
9
e2V Dψ2 +

1
6
e2U

(
dΩ2

1 + dΩ2
2

)]
+ e4(φ−T )/3dχ2

F4 =4eT−V−4U Vol4 + d [A∧ (dσ +A)] ∧ dχ

d (Dψ) =J1 + J2

dA =J1 − J2

Yielding a four dimensional theory with
A four dimensional metric gµν

A massive vector field A
Four scalar fields U, V , T , φ



After performing the KK reduction the vector A has the right
effective mass to allow for Lif4(z = 2) as a solution to the 4d
equations of motion simply as

ds2 =− r4 dt2 + r2 (dx2
1 + dx2

2
)
+

dr2

r2

A =r2 dt
U =V = T = φ = 0



d = 11 solutions
The corresponding class of general solutions in eleven dimensional
supergravity is

ds2
11 = Φ−2/3

[
2dx+dx− + hdx+2 + 2Cdx+dx2

]
+ Φ1/3ds2 (E8)

G = dx+ ∧ dx− ∧ dx ∧ dΦ−1 + dx+ ∧ V + dx+ ∧ dx ∧ d
(
Φ−1C

)
with E8 being Ricci flat and also

∇2
E8

Φ =0, ∇2
E8

h = − |V |2E8

d ∗E8 dC = 0, dV = d ∗E8 V = 0

Schrödinger solutions with z ≥ 5/4
Lifshitz solutions with z=2 dual to 1+ 1 dimensional field
theories



Wrapped M5-branes on SLAG3 manifolds

Consider a Calabi-Yau M6, J, Ω with SLAG 3-cycle Σ3

Vol (Σ3) = Re (Ω)|Σ3

An M5-brane can wrap Σ3 while preserving supersymmetry

Worldvolume of wrapped M5-brane becomes R1,2 × Σ3. In the
IR one obtains a d = 3 QFT with N = 2 SUSY

AdS/CFT suggests that if Σ3 = H3/Γ this QFT is N = 2
SCFT dual to AdS4 ×H3/Γ× S4



Wrapped M5-branes on SLAG3 manifolds

One can construct a D = 11 solution that interpolates between
AdS4 ×H3/Γ× S4 in the IR and AdS7 × S4 in the UV with

ds2 (AdS7) =
dr2

r2 + r2 [dxµdxµ + ds2 (H3/Γ
)]

describing a flow across dimensions to the d = 3, N = 2
SCFT

Perform a KK reduction down to d = 4 to study the N = 2
SCFT at finite temperature and charge density with respect to
the abelian R-symmetry



Consistent truncation on H3/Γ× S4

First perform a reduction on S4 to obtain d = 7 SO(5)
gauged SUGRA [Nastase, Vaman, Nieuwenhuizen] [Cvetic, Lu, Pope,
Sadrzadeh, Tran]

Perform a second KK reduction of d = 7 SO(5) gauged
SUGRA on Σ3 while keeping breathing mode multiplet

The four dimensional theory is an N = 2 SUGRA with

Gauged SUGRA → metric + 1 vector
1 Vector multiplet → 1 vector +2 scalars
2 Hypermultiplets → 8 scalars

The scalars parametrize the coset
(

SU(1,1)
U(1)

)
VM
×
(

G2(2)
SO(4)

)
HM



Choosing Σ3 = H3/Γ the d = 4 theory admits a SUSY AdS4
solution

Also a non-SUSY neutral AdS4, perturbatively stable with
respect to the modes kept in our consistent truncation

This theory admits a Lifshitz solution with z ≈ 39 which
uplifts to L4 ×H3/Γ× S4 with the S4 fibered over both
H3/Γ and the four dimensional Lif4



The lower dimensional theory can be used to study the dual
N = 2 SCFT dual to M5-branes wrapping SLAG H3/Γ cycles
at finite temperature and chemical potential

Within this KK reduced theory there is a subtruncation
describing Einstein-Maxwell theory. This gives a standard
d = 4 AdS-RN black hole asymptoting to SUSY AdS4
describing the SCFT at high enough temperature

Preliminary study of stability issues indicate:

Branch of black holes carrying charged scalar hair → new top
down holographic superconducting black holes

Branch of black holes with no charged scalar hair → top down
analogues of dilatonic black holes



Conclusions / Open questions

Constructed neutral Lifshitz solutions of type IIB and d = 11
SUGRA with z = 2. Special cases admitting a consistent KK
reduction

Dual interpretation
Construction of finite temperature Lifshitz/Schrödinger
solutions
Construction on interpolating Lif → AdS solutions

New consistent truncation of d = 11 SUGRA on Σ3 × S4 with
Σ3 = S4, H3, T 3 to an N = 2, d = 4 gauged SUGRA

Rich set of solutions
AdS4 ×H3/Γ× S4 with N = 2 SUSY and also N = 0
Charged Lif4 ×H3/Γ× S4 with N = 0

Are they related via holographic flows?
Initiated a study of the N = 2 SCFT at finite temperature and
chemical potential
New branches of black holes → Numerical construction and
study of the phase structure


	Main Part
	Sch( z) and Lif( z=2) solutions in type IIB and d=11 SUGRA
	Consistent KK reduction of d=11 SUGRA on 3S4
	Comments / Open questions


