3d $\mathcal{N} = 2$ flavoured quiver gauge theories and M2-branes at toric CY_4 cones

Stefano Cremonesi

(Tel Aviv University)

Crete Conference On Gauge Theories And The Structure Of Spacetime Sep 14, 2010

F. Benini, C. Closset, SC, JHEP **1002**, 036 (2010) [arXiv:0911.4127] SC, arXiv:1007.4562

A (10) A (10)

3d gauge theories and M2: why bother?

 Use gauge theories to understand multiple membranes in M-theory
 [Bagger, Lambert 07; Gustavsson 07; van Raamsdonk 08; Aharony, Bergman, Jafferis, Maldacena 08; ...]

• Freund-Rubin *AdS*₄ vacua of 11d supergravity (Warped) *AdS*₄ vacua of type IIA supergravity

 3d quiver gauge theories (w/ Chern-Simons terms): toy models for condensed matter systems [Sachdev-Yin 08]

🗇 🕨 🖌 🖻 🕨 🔺 🖻

D3 branes at toric CY_3 cones and $\mathcal{N} = 1$ SCFTs in 4d

Toric: holomorphic $U(1)^3$ action on the CY_3 cone $Y_6 = C(X_5)$.

Low energy dynamics on a stack of *N* D3 at the apex of the cone

- N = 1 superconformal SU(N)^G quiver gauge theory in 4d: chiral superfields X^a_{ii} in bifundamental representations (□_i, □_i)
- Superpotential W(X) satisfying the *toric* condition (superconformal U(1)_R, *mesonic* U(1)²)
 5 (Line 2000) 2000 (1000)

F-flatness $\partial W(X) = 0$: monomial=monomial.

- Mesonic branch of the moduli space: Sym_N Y₆.
- Dual to type IIB on $AdS_5 \times X_5$ with $\int_{X_5} F_5 = N$.

IIB brane tilings & 4d $\mathcal{N} = 1$ toric quiver gauge th's

Info packaged in a type IIB brane tiling.

[Hanany, Kennaway 05; Franco, Hanany, Kennaway, Vegh, Wecht 05]

 We know the quiver gauge theory(/ies) on D3 branes at any toric CY₃ Y₆ (inverse algorithm)

- 4 回 ト 4 ヨ ト

M2 branes at toric CY_4 and 3d $\mathcal{N} = 2$ SCFTs

Still far from knowing the 3d $\mathcal{N} = 2$ gauge theory on N M2 at any toric CY_4 $Y_8 = C(X_7)$, dual to M-theory on $AdS_4 \times X_7$ with $\int_{X_7} *G_4 = N$ at large N.

Pre-ABJM: M-theory brane crystals

[Lee 06; Lee², Park 07; Kim, Lee², Park 07]

Proposal for Abelian theories, non-Abelian generalisation unclear. Missed some partial resolutions.

Post-ABJM: 3d $\mathcal{N} = 2 U(N)^{G}$ toric Chern-Simons quiver gauge theories

- with 4d parents: derivation by reduction to IIA.
- without 4d parents: crystal-inspired, no stringy derivation.
- with 4d parents, plus fundamental flavours: stringy derivation, replace models without 4d parents.

 $\mathcal{N} = 2$ SUSY in 3d: dimensional reduction of $\mathcal{N} = 1$ SUSY in 4d. Abelian vector multiplet contains real scalar σ , complexified by dual photon τ .

A (10) A (10)

IIA brane tilings and 3d theories with 4d parents

[Hanany, Zaffaroni 08; Ueda, Yamazaki 08; Imamura, Kimura 08]

Geometric moduli space of the Abelian theory is a toric CY_4 cone.

A B b A B b

Geometric moduli space of $\mathcal{N} = 2$ quiver CS theories

$$U(1)^G$$
 case for simplicity. $\sum_{i=1}^G k_i = 0.$ [Martelli, Sparks 08; Hanany, Zaffaroni 08]

• F-flatness:
$$\mathcal{Z} = \{X_{\alpha}, \ \alpha = 1, \dots, E \mid \partial W(X) = 0\} \subset \mathbb{C}^{E}$$

• **D-flatness:**
$$\mathcal{D}_i = \frac{k_i \sigma_i}{2\pi} \quad \forall_{i=1}^G , \quad |X_{\alpha}|^2 \left(\sum_{i=1}^G g_i[X_{\alpha}] \sigma_i\right)^2 = 0 \quad \forall_{\alpha=1}^E ,$$

 $\mathcal{D}_i \equiv \sum_{\alpha=1}^E g_i[X_{\alpha}] |X_{\alpha}|^2$

Diagonal photon $A_{diag} \equiv \sum_i A_i$ dualised into a periodic scalar τ .

• Gauge:
$$A_i \to A_i + d\theta_i, \ \tau \to \tau + \frac{1}{G} \sum_i k_i \theta_i, \ X_\alpha \to e^{i g_i [X_\alpha] \theta_i} X_\alpha$$

Branch
$$\sigma_i = \sigma \quad \forall_{i=1}^G$$
:

$$\sum_{\substack{i=1\\ \overline{2\pi}}}^G c_i \mathcal{D}_i = \mathbf{0} \quad \forall \{c_i\} \mid \sum_{\substack{i=1\\ i=1\\ \|k\|^2}}^G c_i k_i = \mathbf{0}$$

伺 ト イヨ ト イヨ ト 二 ヨ

Geometric moduli space of $\mathcal{N} = 2$ quiver CS theories

Geometric moduli space

$$\mathcal{M} = (\mathcal{Z} \ /\!\!/ \ U(1)^{G-2}) / \mathbb{Z}_q \ , \qquad q = \gcd\{k_i\}$$

Moduli spaces of 3d/4d TQGTs w/ same matter content and W(X)

$$\mathcal{M}_{4d}^{mes} = \mathcal{Z} \ /\!\!/ \ U(1)^{G-1} = \mathcal{M}_{3d} \ /\!\!/ \ U(1)_{\vec{k}}$$

[Jafferis, Tomasiello 08; Martelli, Sparks 08; Hanany, Zaffaroni 08]

Alternatively, use unit flux diagonal monopole operators T, \tilde{T} (instead of σ , τ) and *X*'s to form gauge invariants under $U(1)^{G}$:

$$\begin{split} \tilde{\mathcal{Z}} &= \{X_{\alpha}, T, \tilde{T} \mid \partial W(X) = 0, \ T\tilde{T} = 1\} \subset \mathbb{C}^{E+2} \ , \\ \mathcal{M} &= \tilde{\mathcal{Z}} \not \mid U(1)^{G-1} \ . \end{split}$$

Gauge charges induced by CS terms: $g_i[T] = -g_i[\tilde{T}] = k_i$.

[Benini, Closset, SC 09]

"Stringy derivation" of quiver CS theories

Toric CY₄ cone

 S^1 bundle over a 7-manifold, which is a toric CY_3 cone fibred over \mathbb{R} . A Kähler parameter of CY_3 varies linearly along \mathbb{R} .

 $CY_3 = CY_4 // U(1)_M \longrightarrow$ quiver gauge theory on D2. (Not quite...)

For an M2 probe: $-S^1$ parametrised by τ $-CY_3$ by mesonic $U(1)^G$ invariants of the quiver (Kähler parameters are FI terms) $-\mathbb{R}$ parametrised by σ

S¹: M-theory circle in the KK reduction to IIA (after \mathbb{Z}_q quotient). Curvature of the $U(1)_M$ bundle: RR F_2 , which induces CS terms on wv of fractional D2 probes.

Fibration of CY_3 over \mathbb{R} : scalar $\mathcal{N} = 2$ partners of CS terms.

くロン (雪) (ヨ) (ヨ)

Brane tilings with multiple bonds: no 4d parents

[Hanany, Zaffaroni 08; Hanany, Vegh, Zaffaroni 08; Franco, Hanany, Park, Rodriguez-Gomez 08]

 $W = \mathrm{Tr} \left(C_{13} C_{32} B_1 A_2 B_2 - C_{13} C_{32} B_2 A_2 B_1 \right)$

 $k_1 = n_1 - n_2 + n_3 - n_4$ $k_2 = n_2 - n_3 + n_4 - n_5$ $k_3 = -n_1 + n_5$

No stringy derivation of the quiver theory. Actually, let's see...

Rescale proposed CS levels by h:

- 3d toric diagram rescaled vertically: Y₈ → Y₈/ℤ_h
- Non-isolated singularities, locally C² × C²/Z_h
- Dual SU(h) global symmetry not visible in the proposed quiver theory
- *h* D6 branes in type IIA after KK reduction (fixed point sets of U(1)_M ⊃ Z_h)

Lesson: no new gauge groups, but flavours.

- D2-D6, D6-D2' strings: fund. and antifund. flavours p and q.
- Holom. embedding of D6 in $CY_3 \longrightarrow$ Superpotential term $\delta W = pXq$.
- D6 at the origin of the real line: vanishing real masses for flavours.

(ロ) (同) (三) (三) (三) (○) (○)

Our proposal: quivers with fundamental flavours

[Benini, Closset, SC 09; Jafferis 09]

$$W = \operatorname{Tr}(A_1B_1A_2B_2 - A_1B_2A_2B_1) + \sum_{i=1}^{h} p^i A_1q_i$$

- Quantum corrected geometric branch of moduli space: *CY*₄ of M-theory.
- Derived by KK reduction to IIA. Manifest flavour symmetries.
- Real masses for flavours: displace D6 along \mathbb{R} (blowup in M-theory).
- Cross D6: $\int F_2$ jump \implies CS levels are shifted.

3d toric flavoured quiver gauge theories

Flavouring: couple h_{α} flavours (p_{α}, q_{α}) to bifundamentals X_{α}

$$W = W_0(X) + \sum_{lpha=1}^E \sum_{i_lpha=1}^{h_lpha} (p_lpha)^{i_lpha} X_lpha (q_lpha)_{i_lpha}$$

Quantisation of CS levels: $k_i + \frac{1}{2} \sum_{\psi} (g_i[\psi])^2 \in \mathbb{Z}$

We focus on Abelian theories $U(1)^G$ to compute the geometric moduli space.

BPS 't Hooft monopole operators T⁽ⁿ⁾
Local operators (chiral superfields)

- Insert *n* units of magnetic flux (and background of *σ*) in each *U*(1) around puncture in Euclidean theory
- Classically induced electric charges: $n(k_1, k_2, ..., k_G)$.
- Quantum induced charges: $\delta Q[T^{(n)}] = \frac{|n|}{2} \sum_{\alpha} h_{\alpha} Q[X_{\alpha}]$
- $T^{(n)} = (T^{(1)})^n \equiv T^n \text{ if } n > 0;$ $T^{(n)} = (T^{(-1)})^{-n} \equiv \tilde{T}^{-n} \text{ if } n < 0.$

[Borokhov, Kapustin, Wu 02]

イロト イポト イヨト イヨト

Classically, or in the absence of flavours: $T\tilde{T} = 1$.

In the presence of flavours, according to the quantum induced charges, the chiral ring is modified: $T\tilde{T} = \prod_{\alpha} X_{\alpha}^{h_{\alpha}}$.

Quantum corrected geometric moduli space

Branch: $p_{\alpha} = q_{\alpha} = 0 \forall \alpha$. Same classical F-terms, different quantum relation.

$$\tilde{\mathcal{Z}}_{flav} = \{X_{\alpha}, T, \tilde{T} \mid \partial W_0(X) = 0, \ T\tilde{T} = \prod_{\alpha} X_{\alpha}^{h_{\alpha}}\} \subset \mathbb{C}^{E+2}$$

$$\mathcal{M}_{\text{flav}} = \tilde{\mathcal{Z}}_{\text{flav}} /\!\!/ U(1)^{G-1}$$

Gauge charges of monopoles: $g_i[T^{(\pm 1)}] = \pm k_i + \frac{1}{2} \sum_{\alpha} h_{\alpha} g_i[X_{\alpha}]$

The geometric branch is a toric CY_4 cone, precisely the one that we started from in M-theory when we reduced to type IIA to *derive* the 3d quiver gauge theory.

Examples: torically flavoured ABJ(M)

$$W = \operatorname{Tr} (A_{1}B_{1}A_{2}B_{2} - A_{1}B_{2}A_{2}B_{1}) +$$

+ $\sum_{\alpha=1}^{h_{a}} (p_{1})^{\alpha}A_{1}(q_{1})_{\alpha} - \sum_{\beta=1}^{h_{b}} (\tilde{p}_{1})^{\beta}B_{1}(\tilde{q}_{1})_{\beta} - \sum_{\gamma=1}^{h_{c}} (p_{2})^{\gamma}A_{2}(q_{2})_{\gamma} + \sum_{\delta=1}^{h_{d}} (\tilde{p}_{2})^{\delta}B_{2}(\tilde{q}_{2})_{\delta}$

Dual Type IIB brane configuration

• k = 0 and $h_a = h_b = h_c = h_d = 0$ (3d version of KW or KT/KS)

Stefano Cremonesi 3d $\mathcal{N} = 2$ flavoured quiver gauge theories and M2-branes at toric CY_4 cones

[SC 10]

• k = 0 and $h_a = h_b = F_1$, $h_c = h_d = F_2$ (vectorlike flavours)

∃ ▶ ∢ ∃

(Torically) flavoured ABJ(M):

$$k=h+\frac{1}{2}(h_a-h_b+h_c-h_d)$$

Thanks to IIB brane construction, results on

- fractional M2 branes and torsion G₄ fluxes
- cascades of 3d Seiberg-like dualities
- interplay between partial resolutions and fractional M2 branes

for (gravity duals of) M2 brane theories at cones over toric SE_7 (including $Q^{1,1,1}$ and $Y^{1,2}(\mathbb{CP}^2)$ and two infinite classes of smooth SE_7).

Outlook

- Added flavours to 3d $\mathcal{N} = 2$ toric quiver gauge theories:
 - New gauge theories for M2-branes at (infinitely many) toric *CY*₄ singularities
 - Consistent with D6 embedding in KK reduction of M-theory to IIA
 - Conceptual way of generating CS terms by introducing flavours, giving them real masses, integrating out.
- Dual Type IIB brane configuration, when available, allows a more detailed study of the correspondence and confirms the proposal.
- Future directions: generalise the analysis of type IIB brane configurations dual to toric *CY*₄ and understand field theory interpretation of all partial resolutions.