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3d gauge theories and M2: why bother?

Use gauge theories to understand multiple membranes in
M-theory [Bagger, Lambert 07; Gustavsson 07; van Raamsdonk 08;

Aharony, Bergman, Jafferis, Maldacena 08; . . . ]

Freund-Rubin AdS4 vacua of 11d supergravity
(Warped) AdS4 vacua of type IIA supergravity

3d quiver gauge theories (w/ Chern-Simons terms):
toy models for condensed matter systems [Sachdev-Yin 08]
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D3 branes at toric CY3 cones and N = 1 SCFTs in 4d

Toric: holomorphic U(1)3 action on the CY3 cone Y6 = C(X5).

Low energy dynamics on a stack of N D3 at the apex of the cone

N = 1 superconformal SU(N)G quiver gauge theory in 4d:

chiral superfields X a
ij in bifundamental representations (2i ,2j)

Superpotential W (X ) satisfying the toric condition

(superconformal U(1)R , mesonic U(1)2)

F-flatness ∂W (X ) = 0: monomial=monomial.

Mesonic branch of the moduli space: SymNY6.

Dual to type IIB on AdS5 × X5 with
∫

X5
F5 = N.
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IIB brane tilings & 4d N = 1 toric quiver gauge th’s
Info packaged in a type IIB brane tiling.

[Hanany, Kennaway 05; Franco, Hanany, Kennaway, Vegh, Wecht 05]

W = Tr (A1B1A2B2 − A1B2A2B1)

We know the quiver gauge theory(/ies) on D3 branes at any toric CY3 Y6

(inverse algorithm)
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M2 branes at toric CY4 and 3d N = 2 SCFTs

Still far from knowing the 3d N = 2 gauge theory on N M2 at any toric CY4

Y8 = C(X7), dual to M-theory on AdS4 × X7 with
∫

X7
∗G4 = N at large N.

Pre-ABJM: M-theory brane crystals [Lee 06; Lee2, Park 07; Kim, Lee2, Park 07]

Proposal for Abelian theories, non-Abelian generalisation unclear.
Missed some partial resolutions.

Post-ABJM: 3d N = 2 U(N)G toric Chern-Simons quiver gauge theories

with 4d parents: derivation by reduction to IIA.

without 4d parents: crystal-inspired, no stringy derivation.

with 4d parents, plus fundamental flavours: stringy derivation, replace
models without 4d parents.

N = 2 SUSY in 3d: dimensional reduction of N = 1 SUSY in 4d.
Abelian vector multiplet contains real scalar σ, complexified by dual photon τ .
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IIA brane tilings and 3d theories with 4d parents

[Hanany, Zaffaroni 08; Ueda, Yamazaki 08; Imamura, Kimura 08]

W = Tr (A1B1A2B2 − A1B2A2B1)

k = n1 − n2 + n3 − n4

Geometric moduli space of the Abelian theory is a toric CY4 cone.
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Geometric moduli space of N = 2 quiver CS theories

U(1)G case for simplicity.
G∑

i=1
ki = 0. [Martelli, Sparks 08; Hanany, Zaffaroni 08]

F-flatness: Z = {Xα, α = 1, . . . ,E | ∂W (X ) = 0} ⊂ CE

D-flatness: Di = kiσi
2π ∀G

i=1 , |Xα|2
( G∑

i=1
gi [Xα]σi

)2
= 0 ∀E

α=1 ,

Di ≡
E∑
α=1

gi [Xα] |Xα|2

Diagonal photon Adiag ≡
∑

i Ai dualised into a periodic scalar τ .

Gauge: Ai → Ai + dθi , τ → τ + 1
G

∑
i ki θi , Xα → ei gi [Xα]θi Xα

Branch σi = σ ∀G
i=1:

G∑
i=1

ci Di = 0 ∀ {ci} |
G∑

i=1
ciki = 0

σ
2π = 1

‖k‖2

∑
i ki Di , ‖k‖2 =

∑
i k2

i
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Geometric moduli space of N = 2 quiver CS theories

Geometric moduli space

M = (Z � U(1)G−2)/Zq , q = gcd{ki}

Moduli spaces of 3d/4d TQGTs w/ same matter content and W (X )

Mmes
4d = Z � U(1)G−1 =M3d � U(1)~k

[Jafferis, Tomasiello 08; Martelli, Sparks 08; Hanany, Zaffaroni 08]

Alternatively, use unit flux diagonal monopole operators T , T̃ (instead of σ, τ )
and X ’s to form gauge invariants under U(1)G:

Z̃ = {Xα,T , T̃ | ∂W (X ) = 0, T T̃ = 1} ⊂ CE+2 ,

M = Z̃ � U(1)G−1 .

Gauge charges induced by CS terms: gi [T ] = −gi [T̃ ] = ki .

[Benini, Closset, SC 09]
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“Stringy derivation” of quiver CS theories [Aganagic 09]

Toric CY4 cone

S1 bundle over a 7-manifold, which is a toric CY3 cone fibred over R.
A Kähler parameter of CY3 varies linearly along R.

CY3 = CY4 � U(1)M −→ quiver gauge theory on D2. (Not quite...)

For an M2 probe: – S1 parametrised by τ
– CY3 by mesonic U(1)G invariants of the quiver

(Kähler parameters are FI terms)
– R parametrised by σ

S1: M-theory circle in the KK reduction to IIA (after Zq quotient).

Curvature of the U(1)M bundle: RR F2, which induces CS terms
on wv of fractional D2 probes.

Fibration of CY3 over R: scalar N = 2 partners of CS terms.
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Brane tilings with multiple bonds: no 4d parents

[Hanany, Zaffaroni 08; Hanany, Vegh, Zaffaroni 08; Franco, Hanany, Park, Rodriguez-Gomez 08]

W = Tr (C13C32B1A2B2−C13C32B2A2B1)

k1 = n1 − n2 + n3 − n4

k2 = n2 − n3 + n4 − n5

k3 = −n1 + n5
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No stringy derivation of the quiver theory. Actually, let’s see...

Rescale proposed CS levels by h:

3d toric diagram rescaled vertically: Y8 −→ Y8/Zh

Non-isolated singularities, locally C2 × C2/Zh

Dual SU(h) global symmetry not visible in the proposed quiver theory

h D6 branes in type IIA after KK reduction
(fixed point sets of U(1)M ⊃ Zh)

Lesson: no new gauge groups, but flavours.

D2-D6, D6-D2’ strings: fund. and antifund. flavours p and q.

Holom. embedding of D6 in CY3 −→ Superpotential term δW = pXq.

D6 at the origin of the real line: vanishing real masses for flavours.
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Our proposal: quivers with fundamental flavours
[Benini, Closset, SC 09; Jafferis 09]

W = Tr (A1B1A2B2 − A1B2A2B1) +
h∑

i=1

piA1qi

Quantum corrected geometric branch of moduli space: CY4 of M-theory.

Derived by KK reduction to IIA. Manifest flavour symmetries.

Real masses for flavours: displace D6 along R (blowup in M-theory).

Cross D6:
∫

F2 jump =⇒ CS levels are shifted.
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3d toric flavoured quiver gauge theories

Flavouring: couple hα flavours (pα, qα) to bifundamentals Xα

W = W0(X ) +
E∑
α=1

hα∑
iα=1

(pα)iαXα(qα)iα

Quantisation of CS levels: ki + 1
2

∑
ψ

(
gi [ψ]

)2 ∈ Z

We focus on Abelian theories U(1)G to compute the geometric moduli space.

BPS ’t Hooft monopole operators T (n) [Borokhov, Kapustin, Wu 02]

Local operators (chiral superfields)

Insert n units of magnetic flux (and background of σ) in each U(1)
around puncture in Euclidean theory

Classically induced electric charges: n(k1, k2, . . . , kG).

Quantum induced charges: δQ[T (n)] = |n|
2

∑
α hαQ[Xα]

T (n) = (T (1))n ≡ T n if n > 0; T (n) = (T (−1))−n ≡ T̃−n if n < 0.
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Classically, or in the absence of flavours: T T̃ = 1.

In the presence of flavours, according to the quantum induced charges, the
chiral ring is modified: T T̃ =

∏
α X hα

α .

Quantum corrected geometric moduli space

Branch: pα = qα = 0 ∀α. Same classical F-terms, different quantum relation.

Z̃flav = {Xα,T , T̃ | ∂W0(X ) = 0, T T̃ =
∏

α
X hα
α } ⊂ CE+2 ,

Mflav = Z̃flav � U(1)G−1 .

Gauge charges of monopoles: gi [T (±1)] = ±ki + 1
2

∑
α hαgi [Xα]

The geometric branch is a toric CY4 cone , precisely the one that we started
from in M-theory when we reduced to type IIA to derive the 3d quiver gauge
theory.
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Examples: torically flavoured ABJ(M)

W = Tr (A1B1A2B2 − A1B2A2B1)+

+

ha∑
α=1

(p1)
αA1(q1)α −

hb∑
β=1

(p̃1)
βB1(q̃1)β −

hc∑
γ=1

(p2)
γA2(q2)γ +

hd∑
δ=1

(p̃2)
δB2(q̃2)δ
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Dual Type IIB brane configuration [SC 10]

k = 0 and ha = hb = hc = hd = 0 (3d version of KW or KT/KS)
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k = 0 and ha = hb = F1, hc = hd = F2 (vectorlike flavours)
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(Torically) flavoured ABJ(M):

k = h +
1
2

(ha − hb + hc − hd)

Thanks to IIB brane construction, results on

- fractional M2 branes and torsion G4 fluxes

- cascades of 3d Seiberg-like dualities

- interplay between partial resolutions and fractional M2 branes

for (gravity duals of) M2 brane theories at cones over toric SE7

(including Q1,1,1 and Y 1,2(CP2) and two infinite classes of smooth SE7).
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Outlook

Added flavours to 3d N = 2 toric quiver gauge theories:

- New gauge theories for M2-branes at (infinitely many) toric CY4

singularities
- Consistent with D6 embedding in KK reduction of M-theory to IIA
- Conceptual way of generating CS terms by introducing flavours,

giving them real masses, integrating out.

Dual Type IIB brane configuration, when available, allows a more
detailed study of the correspondence and confirms the proposal.

Future directions: generalise the analysis of type IIB brane
configurations dual to toric CY4 and understand field theory
interpretation of all partial resolutions.

Stefano Cremonesi 3dN = 2 flavoured quiver gauge theories and M2-branes at toric CY4 cones


	

