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• Will report on new computations:     - at weak coupling using integrability
                                                            - at strong coupling using AdS/CFT

[Zarembo; Roiban,Tseytlin]
[Janik et al]



3-pt coupling from linear deformation

• Deform field theory around conformal fixed point with marginal (or irrelevant) 
operator      of dimension D ∆

Su = S + u Λ4−∆

∫
d4yD(y)

D = 4
∆ ≥ 4

βu =
du

d ln Λ
= (∆− 4)u + · · ·
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3-pt coupling from linear deformation

renormalized operator at critical pointOA ≡

Ou
A ≡ renormalized operator of deformed theory

• Will show that effect of deformation on renormalization of operator         is 
determined by couplings 

OA
aDAB [Cardy]
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• Consider correlation functions to linear order in u
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∆B = ∆A ,

Λ∆A−∆B
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ln (Λ|x|) ,

OB

Finite number of operators        
      contribute to divergence

∆B ≤ ∆A
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• Deformed anomalous dimension matrix

diagonalizes         at critical point

= δABγA + u 2π2aDAB Λ∆0
A−∆0

B

{
Ob

A

} H

Hu
AB = Z−1

AC

d

d ln Λ
ZCB

Ou
A = ZAB(Λ, u)Ob

B

C-Z equation



• Can compute couplings              from knowledge of aDAB Hu = Hu(D)
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eigenvalues:

eigenvectors:
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A〈Ob
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Weak coupling - Planar N=4 SYM

• Simplest example D = L g2 =
g2

Y MN

16π2
=

λ

16π2

S =
1

g2
YM

∫
d4y Tr

(
− 1

2
FµνFµν − · · ·

)

∂

∂u
= −g2 ∂

∂g2

g2 → g2(1− u)



Weak coupling - Planar N=4 SYM

• Simplest example D = L g2 =
g2

Y MN

16π2
=

λ

16π2

S =
1

g2
YM

∫
d4y Tr

(
− 1

2
FµνFµν − · · ·

)

∂

∂u
= −g2 ∂

∂g2

g2 → g2(1− u)

• Consider SU(2) subsector and         made of       magnonsOA M

OA =
∑

x

ψp1,··· ,pM (x1, · · · , xM ) |x1, · · · , xM 〉

|x1, · · · , xM 〉 ≡ |Z · · · ZXZ · · · ZXZ · · · 〉 ,   with          complex scalarsZ, X



• Single magnon contribution to anomalous dimension

pj = pj(g)

Bethe equations

(all orders, neglecting wrapping)

γj(g) =
√

1 + 16g2 sin2 pj

2
− 1
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Bethe equations

(all orders, neglecting wrapping)
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√
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• Dilute limit, L!M ⇒ pj =
2πnj

L

2π2a(j)
LAA = −8g2 sin2 pj

2√
1 + 16g2 sin2 pj

2

=






−8g2 sin2 pj

2 + O(g4)

−2g
∣∣sin pj

2

∣∣ + O(1)

Wick contractions

Strong coupling, later...

aLAA

g2

∼ g

∼ g2



• Different initial and final magnon states: compute               fromaLAB
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Strong coupling - AdS/CFT

• Operators with very large dimension             are dual to classical string states. 
Expect to use semi-classical approximation to string partition function

∫
DXDγ VΦ(x1) · · · eiSP [X,γ] ∼ eiSP [X̄,γ̄]

〈OA(x1)OB(x2)OC(x3)〉

!"#$ !%#$

Figure 1: (a) The three-point function of semiclassical operators. (b) The correlator of two
semiclassical operators and a supergravity mode.

action, and is thus exponential in
√
λ. The x-dependent factors in (1.1) are consistent

with this exponential dependence on (since ∆I ∼
√
λ) and, as shown in [8], the correct

space-time structure of the two- and three-point correlation functions indeed follows from
the classical string calculation. The OPE coefficients of the semiclassical states should
also be exponentially small (or large) at strong coupling: − lnCI

JK ∝
√
λ.

The classical string solutions that are dual to the two-point functions are relatively
simple. They can be obtained by the Euclidean continuation of spinning strings in global
AdS. In the Poincaré patch the string worldsheet indeed collapses onto the boundary at
two points [14, 7, 8]. Constructing solutions dual to three-point functions seems to be a
difficult problem3. Here we study an intermediate case, when two strings are ”fat” (dual
to operators with ∆ ∝

√
λ) and one string is ”slim” and particle-like (dual to an operator

with ∆ = O(1)). The corresponding Witten diagram is shown in fig. 1b. We further
assume that the ”fat” string is not much disturbed by the insertion of the ”slim” vertex
operator, which means that two of the operators in the correlator must be virtually the
same4. Then we only need to know the fat-string solution for the two-point function and
the vertex operator of the slim string.

3The classical decay process of certain folded string solution has been studied in the Minkowski
signature [15]. The relationship of these Minkowski-signature solutions in global AdS to the three-point
functions in SYM is not clear to us. On the one hand, as argued in [16], the holographic correlation
functions are described by tunneling. The Euclidean signature in this respect is more natural [9]. On
the other hand, the spinning string solutions with non-zero angular momenta in AdS approach the
boundary at a point only if the worldsheet is Minkowskian [8], otherwise (in the Euclidean signature)
the boundary maps to a line [17, 9].

4More precisely, they should be conjugate.

2

x1

x2

x3

∆ ∼ g
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Simpler problem

• Two insertions of heavy state        and one insertion of BPS state
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xfy
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R
d4y Φ0(y)D(y)

〉

CFT
≈

∫
DX Dγ DΦ ei(SP [X,γ,Φ]+SSUGRA[Φ])

OA Dχ



Boundary conditions
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• Heavy string acts as tadpole for light fields
Conformal gauge

∫
d2σ

√
−γ γαβ →

∫ s/2

−s/2
dτ

∫ 2π

0
dσ ηαβ

∫
DX ds eiSP [X,s,Φ=0]

(∫
DΦ e

i
“

SSUGRA[Φ]+
R

d2σ
δSP [X,s,Φ]

δΦ

˛̨
˛
Φ=0

Φ+···
”)
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• 3-point function 

xi

xf

y

X(τ,σ)

〈OA(xi)OA(xf )Dχ(y)〉
∫

DX ds eiS̃P [X,s,Φ=0] Iχ[X, s; y]



i

∫ s/2

−s/2
dτ

∫ 2π

0
dσ

δSP [X, s,Φ]
δχ

∣∣∣∣
Φ=0

Kχ(X(τ,σ); y)
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Should obtain the correct 
3-pt function kinematics



Simplest case - point like string

Massive string state
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• Consider 3-point function 〈OA(0)OA(xf )L(y)〉
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〈OA(0)OA(xf )L(y)〉 ≈ −∆A

8π2

1
x2∆A−4

f y4 (xf − y)4

Correct kinematics and 
agreement with previous 
RG argument:

2π2aLAA = −g2 ∂∆A

∂g2
≈ −∆A
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Other examples

• Giant magnon

As expected:
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• Circular rotating string in       

• Spinning string in 

S5

AdS5



Final comments

• Compute pre-factors to next order in        , also checking RG relation 
between              and 

• Extend to other operators, including 3-point functions with non-trivial 
spin structures

∆A

• Perturbative computation, using effect of deformation by other 
operators on the anomalous dimension matrix and integrability

aLAA

1/g



Final comments
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Figure 1: (a) The three-point function of semiclassical operators. (b) The correlator of two
semiclassical operators and a supergravity mode.

action, and is thus exponential in
√
λ. The x-dependent factors in (1.1) are consistent

with this exponential dependence on (since ∆I ∼
√
λ) and, as shown in [8], the correct

space-time structure of the two- and three-point correlation functions indeed follows from
the classical string calculation. The OPE coefficients of the semiclassical states should
also be exponentially small (or large) at strong coupling: − lnCI

JK ∝
√
λ.

The classical string solutions that are dual to the two-point functions are relatively
simple. They can be obtained by the Euclidean continuation of spinning strings in global
AdS. In the Poincaré patch the string worldsheet indeed collapses onto the boundary at
two points [14, 7, 8]. Constructing solutions dual to three-point functions seems to be a
difficult problem3. Here we study an intermediate case, when two strings are ”fat” (dual
to operators with ∆ ∝

√
λ) and one string is ”slim” and particle-like (dual to an operator

with ∆ = O(1)). The corresponding Witten diagram is shown in fig. 1b. We further
assume that the ”fat” string is not much disturbed by the insertion of the ”slim” vertex
operator, which means that two of the operators in the correlator must be virtually the
same4. Then we only need to know the fat-string solution for the two-point function and
the vertex operator of the slim string.

3The classical decay process of certain folded string solution has been studied in the Minkowski
signature [15]. The relationship of these Minkowski-signature solutions in global AdS to the three-point
functions in SYM is not clear to us. On the one hand, as argued in [16], the holographic correlation
functions are described by tunneling. The Euclidean signature in this respect is more natural [9]. On
the other hand, the spinning string solutions with non-zero angular momenta in AdS approach the
boundary at a point only if the worldsheet is Minkowskian [8], otherwise (in the Euclidean signature)
the boundary maps to a line [17, 9].

4More precisely, they should be conjugate.

2

x1

x2

x3

• More general problem remains. 
Expect integrability to play a crucial 
role. (may be some numerics)

• Compute pre-factors to next order in        , also checking RG relation 
between              and 

• Extend to other operators, including 3-point functions with non-trivial 
spin structures

∆A

• Perturbative computation, using effect of deformation by other 
operators on the anomalous dimension matrix and integrability

aLAA

1/g
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