On three-point correlation functions in gauge/gravity duality

Miguel S. Costa - Universidade do Porto

1008.1070 [hep-th]
With R. Monteiro, J. Santos and D. Zoakos
(overlaps with Zarembo 1008.1059 [hep-th])

Crete Conference on Gauge Theories and The Structure of Spacetime
September 2010

Forward

- Great deal of progress in finding spectrum of planar N=4 SYM at any value of the coupling (AdS/CFT and Integrability) [Kazakov review talk]

Forward

- Great deal of progress in finding spectrum of planar N=4 SYM at any value of the coupling (AdS/CFT and Integrability) [Kazakov review talk]
- To solve planar N=4 SYM need to compute n-point functions. For a CFT this means computing structure constants in 3-point functions (OPE)

$$
\left\langle\mathcal{O}_{A}(0) \mathcal{O}_{B}(x) \mathcal{O}_{C}(y)\right\rangle=\frac{a_{A B C}}{|x|^{\Delta_{A}+\Delta_{B}-\Delta_{C}}|y|^{\Delta_{A}+\Delta_{C}-\Delta_{B}}|x-y|^{\Delta_{B}+\Delta_{C}-\Delta_{A}}}
$$

Forward

- Great deal of progress in finding spectrum of planar $N=4$ SYM at any value of the coupling (AdS/CFT and Integrability) [Kazakov review talk]
- To solve planar N=4 SYM need to compute n-point functions. For a CFT this means computing structure constants in 3-point functions (OPE)

$$
\left\langle\mathcal{O}_{A}(0) \mathcal{O}_{B}(x) \mathcal{O}_{C}(y)\right\rangle=\frac{a_{A B C}}{|x|^{\Delta_{A}+\Delta_{B}-\Delta_{C}}|y|^{\Delta_{A}+\Delta_{C}-\Delta_{B}}|x-y|^{\Delta_{B}+\Delta_{C}-\Delta_{A}}}
$$

- Will report on new computations:
- at weak coupling using integrability - at strong coupling using AdS/CFT
[Zarembo; Roiban,Tseytlin]
[Janik et al]

3-pt coupling from linear deformation

- Deform field theory around conformal fixed point with marginal (or irrelevant) operator \mathcal{D} of dimension Δ

$$
S_{u}=S+u \Lambda^{4-\Delta} \int d^{4} y \mathcal{D}(y)
$$

$$
\begin{aligned}
D & =4 \\
\Delta & \geq 4 \\
\beta_{u}=\frac{d u}{d \ln \Lambda} & =(\Delta-4) u+
\end{aligned}
$$

3-pt coupling from linear deformation

- Deform field theory around conformal fixed point with marginal (or irrelevant) operator \mathcal{D} of dimension Δ

$$
S_{u}=S+u \Lambda^{4-\Delta} \int d^{4} y \mathcal{D}(y)
$$

$$
\begin{aligned}
& D=4 \\
& \Delta \geq 4 \\
& d u
\end{aligned}
$$

$\mathcal{O}_{A} \equiv$ renormalized operator at critical point
$\mathcal{O}_{A}^{u} \equiv$ renormalized operator of deformed theory

3-pt coupling from linear deformation

- Deform field theory around conformal fixed point with marginal (or irrelevant) operator \mathcal{D} of dimension Δ

$$
S_{u}=S+u \Lambda^{4-\Delta} \int d^{4} y \mathcal{D}(y) \quad \begin{aligned}
D & =4 \\
\Delta & \geq 4 \\
& \beta_{u}=\frac{d u}{d \ln \Lambda}
\end{aligned}=(\Delta-4) u+\text { + }
$$

$$
\begin{aligned}
& \mathcal{O}_{A} \equiv \text { renormalized operator at critical point } \\
& \mathcal{O}_{A}^{u} \equiv \text { renormalized operator of deformed theory }
\end{aligned}
$$

- Will show that effect of deformation on renormalization of operator \mathcal{O}_{A} is determined by couplings $a_{\mathcal{D} A B} \quad$ [Cardy]
- Consider correlation functions to linear order in u

$$
\left\langle\mathcal{O}_{A}(x) \cdots\right\rangle_{u}=\left\langle\mathcal{O}_{A}(x) \cdots\right\rangle-u \int d^{4} y\left\langle\mathcal{O}_{A}(x) \mathcal{D}(y) \cdots\right\rangle
$$

- Consider correlation functions to linear order in u

$$
\left\langle\mathcal{O}_{A}(x) \cdots\right\rangle_{u}=\left\langle\mathcal{O}_{A}(x) \cdots\right\rangle-u \int d^{4} y\left\langle\mathcal{O}_{A}(x) \mathcal{D}(y) \cdots\right\rangle
$$

- Need to renormalize \mathcal{O}_{A} because of divergence when $y \sim x$ in integration OPE: $\mathcal{D}(y) \mathcal{O}_{A}(x) \sim \sum_{B} \frac{a_{\mathcal{D} A B} \mathcal{O}_{B}(x)}{|x-y|^{4+\Delta_{A}-\Delta_{B}}}$

$$
\int \frac{d^{4} y}{|x-y|^{\Delta+\Delta_{A}-\Delta_{B}}} \approx 2 \pi^{2} \begin{cases}\ln (\Lambda|x|), & \Delta_{B}=\Delta_{A} \\ \frac{\Lambda^{\Delta_{A}-\Delta_{B}}}{\Delta_{A}-\Delta_{B}}, & \Delta_{B}<\Delta_{A}\end{cases}
$$

- Consider correlation functions to linear order in u

$$
\left\langle\mathcal{O}_{A}(x) \cdots\right\rangle_{u}=\left\langle\mathcal{O}_{A}(x) \cdots\right\rangle-u \int d^{4} y\left\langle\mathcal{O}_{A}(x) \mathcal{D}(y) \cdots\right\rangle
$$

- Need to renormalize \mathcal{O}_{A} because of divergence when $y \sim x$ in integration OPE: $\mathcal{D}(y) \mathcal{O}_{A}(x) \sim \sum_{B} \frac{a_{\mathcal{D A B}} \mathcal{O}_{B}(x)}{|x-y|^{4+\Delta_{A}-\Delta_{B}}}$

$$
\int \frac{d^{4} y}{|x-y|^{\Delta+\Delta_{A}-\Delta_{B}}} \approx 2 \pi^{2} \begin{cases}\ln (\Lambda|x|), & \Delta_{B}=\Delta_{A}, \\ \frac{\Lambda^{\Delta_{A}-\Delta_{B}}}{\Delta_{A}-\Delta_{B}}, & \Delta_{B}<\Delta_{A}\end{cases}
$$

Finite number of operators
\mathcal{O}_{B} contribute to divergence

$$
\Delta_{B} \leq \Delta_{A}
$$

- Define renormalized operators \mathcal{O}_{A}^{u} so that $\left\langle\mathcal{O}_{A}(x) \cdots\right\rangle_{u}$ finite

$$
\mathcal{O}_{A}^{u}=\mathcal{O}_{A}+u \sum_{\Delta_{B}=\Delta_{A}} 2 \pi^{2} a_{\mathcal{D} A B}(\ln \Lambda) \mathcal{O}_{B}+u \sum_{\Delta_{B}<\Delta_{A}} 2 \pi^{2} a_{\mathcal{D} A B} \frac{\Lambda^{\Delta_{A}-\Delta_{B}}}{\Delta_{A}-\Delta_{B}} \mathcal{O}_{B}
$$

- Define renormalized operators \mathcal{O}_{A}^{u} so that $\left\langle\mathcal{O}_{A}(x) \cdots\right\rangle_{u}$ finite

$$
\mathcal{O}_{A}^{u}=\mathcal{O}_{A}+u \sum_{\Delta_{B}=\Delta_{A}} 2 \pi^{2} a_{\mathcal{D} A B}(\ln \Lambda) \mathcal{O}_{B}+u \sum_{\Delta_{B}<\Delta_{A}} 2 \pi^{2} a_{\mathcal{D} A B} \frac{\Lambda^{\Delta_{A}-\Delta_{B}}}{\Delta_{A}-\Delta_{B}} \mathcal{O}_{B}
$$

- Define renormalized operators \mathcal{O}_{A}^{u} so that $\left\langle\mathcal{O}_{A}(x) \cdots\right\rangle_{u}$ finite

$$
\mathcal{O}_{A}^{u}=\mathcal{O}_{A}+u \sum_{\Delta_{B}=\Delta_{A}} 2 \pi^{2} a_{\boldsymbol{a}_{A B}}(\ln \Lambda) \mathcal{O}_{B}+u \sum_{\Delta_{B}<\Delta_{A}} 2 \pi^{2} \widetilde{a_{\mathcal{D A B}}} \frac{\Lambda^{\Delta_{A}-\Delta_{B}}}{\Delta_{A}-\Delta_{B}} \mathcal{O}_{B}
$$

For example $\left\langle\mathcal{O}_{A}^{u}(x) \mathcal{O}_{A}^{u}(0)\right\rangle_{u}=\frac{1}{|x|^{2\left(\Delta_{A}+u 2 \pi^{2} a_{D A A}\right)}}$

- Define renormalized operators \mathcal{O}_{A}^{u} so that $\left\langle\mathcal{O}_{A}(x) \cdots\right\rangle_{u}$ finite

$$
\mathcal{O}_{A}^{u}=\mathcal{O}_{A}+u \sum_{\Delta_{B}=\Delta_{A}} 2 \pi^{2} a_{\mathcal{D A B}}(\ln \Lambda) \mathcal{O}_{B}+u \sum_{\Delta_{B}<\Delta_{A}} 2 \pi^{2} \widetilde{a_{\mathcal{D A B}}} \frac{\Lambda^{\Delta_{A}-\Delta_{B}}}{\Delta_{A}-\Delta_{B}} \mathcal{O}_{B}
$$

For example $\left\langle\mathcal{O}_{A}^{u}(x) \mathcal{O}_{A}^{u}(0)\right\rangle_{u}=\frac{1}{|x|^{2\left(\Delta_{A}+u 2 \pi^{2} a_{D A A}\right)}}$

- Deformed anomalous dimension matrix

$$
\begin{gathered}
\mathcal{O}_{A}^{u}=\mathcal{Z}_{A B}(\Lambda, u) \mathcal{O}_{B}^{b} \quad\left\{\mathcal{O}_{A}^{b}\right\} \text { diagonalizes } \mathcal{H} \text { at critical point } \\
\mathcal{H}_{A B}^{u}=\mathcal{Z}_{A C}^{-1} \frac{d}{d \ln \Lambda} \mathcal{Z}_{C B}=\delta_{A B} \gamma_{A}+u 2 \pi^{2} a_{D A B} \Lambda^{\Delta_{A}^{0}-\Delta_{B}^{0}} \quad \longrightarrow \text { C-Z equation }
\end{gathered}
$$

- Can compute couplings $a_{\mathcal{D} A B}$ from knowledge of $\mathcal{H}^{u}=\mathcal{H}^{u}(\mathcal{D})$

$$
\mathcal{H}^{u}=\mathcal{H}+u \mathcal{H}^{\prime}=\delta_{A B} \gamma_{A}+u 2 \pi^{2} a_{\mathcal{D} A B} \Lambda^{\Delta_{A}^{0}-\Delta_{B}^{0}}
$$

- Can compute couplings $a_{\mathcal{D} A B}$ from knowledge of $\mathcal{H}^{u}=\mathcal{H}^{u}(\mathcal{D})$

$$
\mathcal{H}^{u}=\mathcal{H}+u \mathcal{H}^{\prime}=\delta_{A B} \gamma_{A}+u 2 \pi^{2} a_{\mathcal{D} A B} \Lambda^{\Delta_{A}^{0}-\Delta_{B}^{0}}
$$

Basic quantum mechanics:

$$
\mathcal{O}_{A}=\Lambda^{\gamma_{A}} \mathcal{O}_{A}^{b}
$$

eigenvalues: $\gamma_{A}^{u}=\gamma_{A}+u \gamma_{A}^{\prime}$
eigenvectors: $\mathcal{O}_{A}^{u}=\mathcal{O}_{A}+u \mathcal{O}_{A}^{\prime}$

- Can compute couplings $a_{\mathcal{D} A B}$ from knowledge of $\mathcal{H}^{u}=\mathcal{H}^{u}(\mathcal{D})$

$$
\mathcal{H}^{u}=\mathcal{H}+u \mathcal{H}^{\prime}=\delta_{A B} \gamma_{A}+u 2 \pi^{2} a_{\mathcal{D} A B} \Lambda^{\Delta_{A}^{0}-\Delta_{B}^{0}}
$$

Basic quantum mechanics:

$$
\mathcal{O}_{A}=\Lambda^{\gamma_{A}} \mathcal{O}_{A}^{b}
$$

eigenvalues: $\gamma_{A}^{u}=\gamma_{A}+u \gamma_{A}^{\prime}$
eigenvectors: $\mathcal{O}_{A}^{u}=\mathcal{O}_{A}+u \mathcal{O}_{A}^{\prime}$

$$
\begin{gathered}
2 \pi^{2} a_{\mathcal{D} A A}=\left\langle\mathcal{O}_{A}^{b}\right| \mathcal{H}^{\prime}\left|\mathcal{O}_{A}^{b}\right\rangle=\gamma_{A}^{\prime} \\
2 \pi^{2} a_{\mathcal{D} A B}=\Lambda^{\Delta_{B}^{0}-\Delta_{A}^{0}}\left\langle\mathcal{O}_{B}^{b}\right| \mathcal{H}^{\prime}\left|\mathcal{O}_{A}^{b}\right\rangle
\end{gathered}
$$

Weak coupling - Planar N=4 SYM

- Simplest example $\mathcal{D}=\mathcal{L}$

$$
g^{2}=\frac{g_{Y M}^{2} N}{16 \pi^{2}}=\frac{\lambda}{16 \pi^{2}}
$$

$$
S=\frac{1}{g_{\mathrm{YM}}^{2}} \int d^{4} y \operatorname{Tr}\left(-\frac{1}{2} F_{\mu \nu} F^{\mu \nu}-\cdots\right)
$$

$$
g^{2} \rightarrow g^{2}(1-u)
$$

$$
\frac{\partial}{\partial u}=-g^{2} \frac{\partial}{\partial g^{2}}
$$

Weak coupling - Planar N=4 SYM

- Simplest example $\mathcal{D}=\mathcal{L}$

$$
g^{2}=\frac{g_{Y M}^{2} N}{16 \pi^{2}}=\frac{\lambda}{16 \pi^{2}}
$$

$$
S=\frac{1}{g_{\mathrm{YM}}^{2}} \int d^{4} y \operatorname{Tr}\left(-\frac{1}{2} F_{\mu \nu} F^{\mu \nu}-\cdots\right)
$$

$$
\begin{aligned}
g^{2} & \rightarrow g^{2}(1-u) \\
\frac{\partial}{\partial u} & =-g^{2} \frac{\partial}{\partial g^{2}}
\end{aligned}
$$

- Consider $\operatorname{SU}(2)$ subsector and \mathcal{O}_{A} made of M magnons

$$
\mathcal{O}_{A}=\sum_{x} \psi_{p_{1}, \cdots, p_{M}}\left(x_{1}, \cdots, x_{M}\right)\left|x_{1}, \cdots, x_{M}\right\rangle
$$

$\left|x_{1}, \cdots, x_{M}\right\rangle \equiv|Z \cdots Z X Z \cdots Z X Z \cdots\rangle$, with Z, X complex scalars

- Single magnon contribution to anomalous dimension (all orders, neglecting wrapping)

$$
\gamma_{j}(g)=\sqrt{1+16 g^{2} \sin ^{2} \frac{p_{j}}{2}}-1
$$

$$
p_{j}=p_{j}(g)
$$

Bethe equations

- Single magnon contribution to anomalous dimension (all orders, neglecting wrapping)

$$
\gamma_{j}(g)=\sqrt{1+16 g^{2} \sin ^{2} \frac{p_{j}}{2}}-1
$$

$$
p_{j}=p_{j}(g)
$$

Bethe equations

- RG argument, $\quad 2 \pi^{2} a_{\mathcal{L A A}}=-g^{2} \frac{\partial}{\partial g^{2}} \sum_{j=1}^{M} \gamma_{j}\left(g^{2}\right)$
- Single magnon contribution to anomalous dimension (all orders, neglecting wrapping)

$$
\gamma_{j}(g)=\sqrt{1+16 g^{2} \sin ^{2} \frac{p_{j}}{2}}-1
$$

$$
p_{j}=p_{j}(g)
$$

Bethe equations

- RG argument, $\quad 2 \pi^{2} a_{\mathcal{L A A}}=-g^{2} \frac{\partial}{\partial g^{2}} \sum_{j=1}^{M} \gamma_{j}\left(g^{2}\right)$
- Dilute limit, $L \gg M \Rightarrow p_{j}=\frac{2 \pi n_{j}}{L}$

$$
2 \pi^{2} a_{\mathcal{L} A A}^{(j)}=-8 g^{2} \frac{\sin ^{2} \frac{p_{j}}{2}}{\sqrt{1+16 g^{2} \sin ^{2} \frac{p_{j}}{2}}}=\left\{\begin{array}{l}
\text { Wick contractions } \\
-8 g^{2} \sin ^{2} \frac{p_{j}}{2}+O\left(g^{4}\right) \\
-2 g\left|\sin \frac{p_{j}}{2}\right|+O(1)
\end{array}\right.
$$

Strong coupling, later...

- Different initial and final magnon states: compute $a_{\mathcal{L} A B}$ from $\left\langle\mathcal{O}_{B}^{b}\right| \mathcal{H}^{\prime}\left|\mathcal{O}_{A}^{b}\right\rangle$

$$
\begin{aligned}
\mathcal{H} & =2 g^{2}\left(1-4 g^{2}\right) \sum_{x=1}^{L}\left(1-P_{x, x+1}\right)+2 g^{4} \sum_{x=1}^{L}\left(1-P_{x, x+2}\right) \\
\mathcal{H}^{\prime} & =-\mathcal{H}+8 g^{4} \sum_{x=1}^{L}\left(1-P_{x, x+1}\right)-2 g^{4} \sum_{x=1}^{L}\left(1-P_{x, x+2}\right)
\end{aligned}
$$

- Different initial and final magnon states: compute $a_{\mathcal{L} A B}$ from $\left\langle\mathcal{O}_{B}^{b}\right| \mathcal{H}^{\prime}\left|\mathcal{O}_{A}^{b}\right\rangle$

$$
\begin{aligned}
\mathcal{H} & =2 g^{2}\left(1-4 g^{2}\right) \sum_{x=1}^{L}\left(1-P_{x, x+1}\right)+2 g^{4} \sum_{x=1}^{L}\left(1-P_{x, x+2}\right) \\
\mathcal{H}^{\prime} & =-\mathcal{H}+8 g^{4} \sum_{x=1}^{L}\left(1-P_{x, x+1}\right)-2 g^{4} \sum_{x=1}^{L}\left(1-P_{x, x+2}\right)
\end{aligned}
$$

- Diagonalize \mathcal{H}^{u} to order g^{4} for two magnon states
$2 \pi^{2} a_{\mathcal{L A B}}=\frac{\left\langle\mathcal{O}_{B}^{b}\right| \mathcal{H}^{\prime}\left|\mathcal{O}_{A}^{b}\right\rangle}{L(L-1)}=64 g^{4} \frac{e^{\frac{i}{2}(q-p)}}{L-1} \sin \frac{p}{2} \sin p \sin \frac{q}{2} \sin q$

Two magnon operators
$\mathcal{O}_{A}, \quad p_{1}=-p_{2}=p$
$\mathcal{O}_{B}, \quad q_{1}=-q_{2}=q$

- Different initial and final magnon states: compute $a_{\mathcal{L} A B}$ from $\left\langle\mathcal{O}_{B}^{b}\right| \mathcal{H}^{\prime}\left|\mathcal{O}_{A}^{b}\right\rangle$

$$
\begin{aligned}
\mathcal{H} & =2 g^{2}\left(1-4 g^{2}\right) \sum_{x=1}^{L}\left(1-P_{x, x+1}\right)+2 g^{4} \sum_{x=1}^{L}\left(1-P_{x, x+2}\right) \\
\mathcal{H}^{\prime} & =-\mathcal{H}+8 g^{4} \sum_{x=1}^{L}\left(1-P_{x, x+1}\right)-2 g^{4} \sum_{x=1}^{L}\left(1-P_{x, x+2}\right)
\end{aligned}
$$

- Diagonalize \mathcal{H}^{u} to order g^{4} for two magnon states
$2 \pi^{2} a_{\mathcal{L A B}}=\frac{\left\langle\mathcal{O}_{B}^{b}\right| \mathcal{H}^{\prime}\left|\mathcal{O}_{A}^{b}\right\rangle}{L(L-1)}=64 g^{4} \frac{e^{\frac{i}{2}(q-p)}}{L-1} \sin \frac{p}{2} \sin p \sin \frac{q}{2} \sin q$

Two magnon operators
$\mathcal{O}_{A}, \quad p_{1}=-p_{2}=p$
$\mathcal{O}_{B}, \quad q_{1}=-q_{2}=q$

- Can one extend to other operators in a practical way?

$$
\mathcal{H}^{\prime}=\mathcal{H}^{\prime}(\mathcal{D})
$$

Strong coupling - AdS/CFT

- Operators with very large dimension $\Delta \sim g$ are dual to classical string states.

Expect to use semi-classical approximation to string partition function

$$
\int D X D \gamma V_{\Phi}\left(x_{1}\right) \cdots e^{i S_{P}[X, \gamma]} \sim e^{i S_{P}[\bar{X}, \bar{\gamma}]}
$$

$\left\langle\mathcal{O}_{A}\left(x_{1}\right) \mathcal{O}_{B}\left(x_{2}\right) \mathcal{O}_{C}\left(x_{3}\right)\right\rangle$

Strong coupling - AdS/CFT

- Operators with very large dimension $\Delta \sim g$ are dual to classical string states.

Expect to use semi-classical approximation to string partition function

$$
\int D X D \gamma V_{\Phi}\left(x_{1}\right) \cdots e^{i S_{P}[X, \gamma]} \sim e^{i S_{P}[\bar{X}, \bar{\gamma}]}
$$

Open problem

Simpler problem

- Two insertions of heavy state \mathcal{O}_{A} and one insertion of BPS state \mathcal{D}_{χ}

$$
\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{D}_{\chi}(y)\right\rangle
$$

Simpler problem

- Two insertions of heavy state \mathcal{O}_{A} and one insertion of BPS state \mathcal{D}_{χ}

$$
\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right) e^{\int d^{4} y \Phi_{0}(y) \mathcal{D}(y)}\right\rangle_{C F T} \approx \int D X D \gamma D \Phi e^{i\left(S_{P}[X, \gamma, \Phi]+S_{S U G R A}[\Phi]\right)}
$$

Simpler problem

- Two insertions of heavy state \mathcal{O}_{A} and one insertion of BPS state \mathcal{D}_{χ}

$$
\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right) e^{\int d^{4} y \Phi_{0}(y) \mathcal{D}(y)}\right\rangle_{C F T} \approx \int D X D \gamma D \Phi e^{i\left(S_{P}[X, \gamma, \Phi]+S_{S U G R A}[\Phi]\right)}
$$

Boundary conditions string worldsheet:

$$
\begin{aligned}
& X^{a}\left(\tau_{i}, \sigma\right)=x_{i}^{a}=\left(x_{i}^{\mu}, \epsilon\right) \\
& X^{a}\left(\tau_{f}, \sigma\right)=x_{f}^{a}=\left(x_{f}^{\mu}, \epsilon\right)
\end{aligned}
$$

Boundary condition light field:

$$
\Phi\left(x^{\mu}, \epsilon\right) \sim \epsilon^{4-\Delta} \Phi_{0}\left(x^{\mu}\right)
$$

Conformal gauge

- Heavy string acts as tadpole for light fields

$$
\int d^{2} \sigma \sqrt{-\gamma} \gamma^{\alpha \beta} \rightarrow \int_{-s / 2}^{s / 2} d \tau \int_{0}^{2 \pi} d \sigma \eta^{\alpha \beta}
$$

$$
\int D d s e^{i S_{P}[X, s, \Phi=0]} \quad\left(\int D \Phi e^{i\left(S_{S U G R A}[\Phi]+\left.\int d^{2} \sigma \frac{\delta S_{P}[X, s, \Phi]}{\delta \Phi}\right|_{\Phi=0} \Phi+\cdots\right)}\right)
$$

Conformal gauge

- Heavy string acts as tadpole for light fields

$$
\int D X d s e^{i S_{P}[X, s, \Phi=0]} \quad\left(\int D \Phi e^{i\left(S_{S U G R A}[\Phi]+\left.\int d^{2} \sigma \frac{\delta S_{P}[X, s, \Phi]}{\delta \Phi}\right|_{\Phi=0} \Phi+\cdots\right)}\right)
$$

"Legendre" transform
$S_{P} \rightarrow \tilde{S}_{P}=S_{P}-\int \Pi \dot{X}$

- 2-point function $\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right)\right\rangle$
$\int D X d s e^{i \tilde{S}_{P}[X, s, \Phi=0]} \approx \frac{P}{\left|x_{i}-x_{f}\right|^{2 \Delta_{A}}}$
[Janik et al]

Conformal gauge

- Heavy string acts as tadpole for light fields
"Legendre" transform
$S_{P} \rightarrow \tilde{S}_{P}=S_{P}-\int \Pi \dot{X}$
- 2-point function $\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right)\right\rangle$
$\int D X d s e^{i \tilde{S}_{P}[X, s, \Phi=0]} \approx \frac{P}{\left|x_{i}-x_{f}\right|^{2 \Delta_{A}}}$
[Janik et al]

Witten diagram with fat string

-3-point function $\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{D}_{\chi}(y)\right\rangle$

$$
\int D X d s e^{i \tilde{S}_{P}[X, s, \Phi=0]} I_{\chi}[X, s ; y]
$$

- 3-point function $\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{D}_{\chi}(y)\right\rangle$

$$
\begin{aligned}
\int D X d s e^{i \tilde{S}_{P}[X, s, \Phi=0]} I_{\chi}[X, s ; y] \\
= \\
\left.i \int_{-s / 2}^{s / 2} d \tau \int_{0}^{2 \pi} d \sigma \frac{\delta S_{P}[X, s, \Phi]}{\delta \chi}\right|_{\Phi=0} K_{\chi}(X(\tau, \sigma) ; y)
\end{aligned}
$$

-3-point function $\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{D}_{\chi}(y)\right\rangle$

$$
\begin{array}{r}
\int D X d s e^{i \tilde{S}_{P}[X, s, \Phi=0]} I_{\chi}[X, s ; y] \\
= \\
\left.\quad i \int_{-s / 2}^{s / 2} d \tau \int_{0}^{2 \pi} d \sigma \frac{\delta S_{P}[X, s, \Phi]}{\delta \chi}\right|_{\Phi=0} K_{\chi}(X(\tau, \sigma) ; y)
\end{array}
$$

- Leading term in pre-factor is just the same as for 2-point function

$$
\begin{aligned}
\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right)\right\rangle & \approx \frac{P}{\left|x_{i}-x_{f}\right|^{2 \Delta_{A}}} \\
\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{D}_{\chi}(y)\right\rangle & \approx P \frac{I_{\chi}[\bar{X}, \bar{s} ; y]}{\left|x_{i}-x_{f}\right|^{2 \Delta_{A}}}
\end{aligned}
$$

-3-point function $\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{D}_{\chi}(y)\right\rangle$

$$
\begin{array}{r}
\int D X d s e^{i \tilde{S}_{P}[X, s, \Phi=0]} I_{\chi}[X, s ; y] \\
= \\
\left.\quad i \int_{-s / 2}^{s / 2} d \tau \int_{0}^{2 \pi} d \sigma \frac{\delta S_{P}[X, s, \Phi]}{\delta \chi}\right|_{\Phi=0} K_{\chi}(X(\tau, \sigma) ; y)
\end{array}
$$

- Leading term in pre-factor is just the same as for 2-point function

$$
\begin{aligned}
\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right)\right\rangle & \approx \frac{\mathbb{X}}{\left|x_{i}-x_{f}\right|^{2 \Delta_{A}}} \\
\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{D}_{\chi}(y)\right\rangle & \approx \mathbb{X} \frac{I_{\chi}[\bar{X}, \bar{s} ; y]}{\left|x_{i}-x_{f}\right|^{2 \Delta_{A}}}
\end{aligned}
$$

-3-point function $\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{D}_{\chi}(y)\right\rangle$

$$
\begin{array}{r}
\int D X d s e^{i \tilde{S}_{P}[X, s, \Phi=0]} I_{\chi}[X, s ; y] \\
= \\
\left.\quad i \int_{-s / 2}^{s / 2} d \tau \int_{0}^{2 \pi} d \sigma \frac{\delta S_{P}[X, s, \Phi]}{\delta \chi}\right|_{\Phi=0} K_{\chi}(X(\tau, \sigma) ; y)
\end{array}
$$

- Leading term in pre-factor is just the same as for 2-point function

$$
\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right)\right\rangle \approx \frac{\not \subset}{\left|x_{i}-x_{f}\right|^{2 \Delta_{A}}}
$$

$$
\left\langle\mathcal{O}_{A}\left(x_{i}\right) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{D}_{\chi}(y)\right\rangle \approx \mathbb{X} \frac{I_{\chi}[\bar{X}, \bar{s} ; y]}{\left|x_{i}-x_{f}\right|^{2 \Delta_{A}}}
$$

Should obtain the correct 3-pt function kinematics

Simplest case - point like string

$$
S_{P}[X, s, \Phi]=\frac{1}{2} \int_{-s / 2}^{s / 2} d \tau e^{\phi / 4}\left(\dot{X}^{a} \dot{X}^{b} g_{a b}-m^{2}\right)
$$

Massive string state

$$
\Delta \approx m \sim \sqrt{g}
$$

Simplest case - point like string

$$
S_{P}[X, s, \Phi]=\frac{1}{2} \int_{-s / 2}^{s / 2} d \tau e^{\phi / 4}\left(\dot{X}^{a} \dot{X}^{b} g_{a b}-m^{2}\right)
$$

Massive string state

$$
\Delta \approx m \sim \sqrt{g}
$$

For space-like separation along x direction

$$
\begin{aligned}
S_{P}[X, s, \Phi=0] & =\int_{-s / 2}^{s / 2} d \tau\left(\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}-m^{2}\right) \\
x(\tau) & =R \tanh \kappa \tau+R \\
z(\tau) & =\frac{R}{\cosh \kappa \tau}
\end{aligned}
$$

Simplest case - point like string

$$
S_{P}[X, s, \Phi]=\frac{1}{2} \int_{-s / 2}^{s / 2} d \tau e^{\phi / 4}\left(\dot{X}^{a} \dot{X}^{b} g_{a b}-m^{2}\right)
$$

Massive string state

$$
\Delta \approx m \sim \sqrt{g}
$$

For space-like separation along x direction

$$
\begin{aligned}
S_{P}[X, s, \Phi=0] & =\int_{-s / 2}^{s / 2} d \tau\left(\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}-m^{2}\right) \\
x(\tau) & =R \tanh \kappa \tau+R \\
z(\tau) & =\frac{R}{\cosh \kappa \tau}
\end{aligned}
$$

Boundary conditions: $\quad x(+s / 2)=x_{f}=2 R$

$$
\begin{aligned}
& x(-s / 2)=x_{i}=0 \\
& z(\pm s / 2)=\epsilon \Rightarrow \kappa \approx \frac{2}{s} \log \frac{x_{f}}{\epsilon}
\end{aligned}
$$

Action: $\quad S_{P}[\bar{X}, s, \Phi=0]=\left(\frac{4}{s^{2}} \log ^{2} \frac{x_{f}}{\epsilon}-m^{2}\right) s$

Simplest case - point like string

$$
S_{P}[X, s, \Phi]=\frac{1}{2} \int_{-s / 2}^{s / 2} d \tau e^{\phi / 4}\left(\dot{X}^{a} \dot{X}^{b} g_{a b}-m^{2}\right)
$$

Massive string state

$$
\Delta \approx m \sim \sqrt{g}
$$

For space-like separation along x direction

$$
\begin{aligned}
S_{P}[X, s, \Phi=0] & =\int_{-s / 2}^{s / 2} d \tau\left(\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}-m^{2}\right) \\
x(\tau) & =R \tanh \kappa \tau+R \\
z(\tau) & =\frac{R}{\cosh \kappa \tau}
\end{aligned}
$$

$$
\text { Boundary conditions: } \quad x(+s / 2)=x_{f}=2 R
$$

$$
x(-s / 2)=x_{i}=0
$$

$$
z(\pm s / 2)=\epsilon \quad \Rightarrow \quad \kappa \approx \frac{2}{s} \log \frac{x_{f}}{\epsilon}
$$

Action: $\quad S_{P}[\bar{X}, s, \Phi=0]=\left(\frac{4}{s^{2}} \log ^{2} \frac{x_{f}}{\epsilon}-m^{2}\right) s$

$$
\left\langle\mathcal{O}_{A}(0) \mathcal{O}_{A}\left(x_{f}\right)\right\rangle \approx \int d X d s e^{i S_{P}[X, s]} \approx \int d s e^{i S_{P}[\bar{X}, s]} \approx e^{i S_{P}[\bar{X}, \bar{s}]}=\frac{1}{\left|x_{f}\right|^{2 \Delta_{A}}}
$$

- Consider 3-point function $\left\langle\mathcal{O}_{A}(0) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{L}(y)\right\rangle$

$$
\begin{aligned}
I_{\phi}[X, s ; y] & =\left.i \int_{-s / 2}^{s / 2} d \tau \frac{\delta S_{P}[X, s, \Phi]}{\delta \phi}\right|_{\Phi=0} K_{\phi}(X(\tau, \sigma) ; y) \\
& =i \frac{3}{4 \pi^{2}} \int_{-s / 2}^{s / 2} d \tau\left(\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}-m^{2}\right)\left(\frac{z}{z^{2}+(x-y)^{2}}\right)^{4}
\end{aligned}
$$

- Consider 3-point function $\left\langle\mathcal{O}_{A}(0) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{L}(y)\right\rangle$

$$
\begin{aligned}
I_{\phi}[X, s ; y] & =\left.i \int_{-s / 2}^{s / 2} d \tau \frac{\delta S_{P}[X, s, \Phi]}{\delta \phi}\right|_{\Phi=0} K_{\phi}(X(\tau, \sigma) ; y) \\
& =i \frac{3}{4 \pi^{2}} \int_{-s / 2}^{s / 2} d \tau\left(\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}-m^{2}\right)\left(\frac{z}{z^{2}+(x-y)^{2}}\right)^{4}
\end{aligned}
$$

At saddle point

$$
I_{\phi}[\bar{X}, \bar{s} ; y]=-\frac{m}{8 \pi^{2}} \frac{x_{f}^{4}}{y^{4}\left(x_{f}-y\right)^{4}}
$$

- Consider 3-point function $\left\langle\mathcal{O}_{A}(0) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{L}(y)\right\rangle$

$$
\begin{aligned}
I_{\phi}[X, s ; y] & =\left.i \int_{-s / 2}^{s / 2} d \tau \frac{\delta S_{P}[X, s, \Phi]}{\delta \phi}\right|_{\Phi=0} K_{\phi}(X(\tau, \sigma) ; y) \\
& =i \frac{3}{4 \pi^{2}} \int_{-s / 2}^{s / 2} d \tau\left(\frac{\dot{x}^{2}+\dot{z}^{2}}{z^{2}}-m^{2}\right)\left(\frac{z}{z^{2}+(x-y)^{2}}\right)^{4}
\end{aligned}
$$

At saddle point

$$
I_{\phi}[\bar{X}, \bar{s} ; y]=-\frac{m}{8 \pi^{2}} \frac{x_{f}^{4}}{y^{4}\left(x_{f}-y\right)^{4}}
$$

$$
\left\langle\mathcal{O}_{A}(0) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{L}(y)\right\rangle \approx-\frac{\Delta_{A}}{8 \pi^{2}} \frac{1}{x_{f}^{2 \Delta_{A}-4} y^{4}\left(x_{f}-y\right)^{4}}
$$

Correct kinematics and agreement with previous RG argument:

$$
2 \pi^{2} a_{\mathcal{L A A}}=-g^{2} \frac{\partial \Delta_{A}}{\partial g^{2}} \approx-\frac{\Delta_{A}}{4}
$$

Other examples

- Giant magnon

$$
\left\langle\mathcal{O}_{A}(0) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{L}(y)\right\rangle \approx-\frac{g}{\pi^{2}} \sin \frac{p}{2} \frac{1}{x_{f}^{2\left(J+4 g \sin \frac{p}{2}\right)-4} y^{4}\left(x_{f}-y\right)^{4}}
$$

As expected: $\quad 2 \pi^{2} a_{\mathcal{L} A A}=-g^{2} \frac{\partial \Delta_{A}}{\partial g^{2}} \approx-2 g \sin \frac{p}{2}$

Other examples

- Giant magnon

$$
\left\langle\mathcal{O}_{A}(0) \mathcal{O}_{A}\left(x_{f}\right) \mathcal{L}(y)\right\rangle \approx-\frac{g}{\pi^{2}} \sin \frac{p}{2} \frac{1}{x_{f}^{2\left(J+4 g \sin \frac{p}{2}\right)-4} y^{4}\left(x_{f}-y\right)^{4}}
$$

$$
\text { As expected: } \quad 2 \pi^{2} a_{\mathcal{L A A}}=-g^{2} \frac{\partial \Delta_{A}}{\partial g^{2}} \approx-2 g \sin \frac{p}{2}
$$

- Circular rotating string in S^{5}
- Spinning string in $A d S_{5}$

Final comments

- Extend to other operators, including 3-point functions with non-trivial spin structures
- Compute pre-factors to next order in $1 / g$, also checking RG relation between $a_{\mathcal{L} A A}$ and Δ_{A}
- Perturbative computation, using effect of deformation by other operators on the anomalous dimension matrix and integrability

Final comments

- Extend to other operators, including 3-point functions with non-trivial spin structures
- Compute pre-factors to next order in $1 / g$, also checking RG relation between $a_{\mathcal{L} A A}$ and Δ_{A}
- Perturbative computation, using effect of deformation by other operators on the anomalous dimension matrix and integrability
- More general problem remains.

Expect integrability to play a crucial role. (may be some numerics)

THANK YOU

