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Metastable vacua

Exist in gauge theories

N=1 SQCD      Intriligator, Seiberg, Shih

Lots of other theories      everybody and their brother

No type IIA realizations of metastable 
vacua                Bena, Gorbatov, Hellerman, Seiberg, Shih

Why ? 



No IIA brane realization
N=1 engineered with D4 + NS5

D4 ends on codimension 2 line inside NS5 

End of D4 branes sources log mode on NS5

NS5 brane bending

     ⇔	 Log running of N=1 coupling constant     Witten

Tiny IR perturbation ⇒  log  ⇒  UV messed up

Bena, Gorbatov, Hellerman, Seiberg, Shih

different UV ⇔	 not vacua of the same theory



What about AdS-CFT
No asmpt-AdS5 metastable solutions

One candidate:                 Kachru Pearson Verlinde

Anti-D3 branes in Klebanov Strassler

Codimension 6   ⇒   modes ~ 1/ r 
4 

Normalizable  ⇒  metastable vacuum

?

∃ asmpt-AdS4 
Maldacena Nastase



Klebanov-Strassler

2-sphere

3-sphere

r = 0

r =∞

1
4π2α�

�

S3
F (3) = M

UV

IR
D3 charge dissolved in fluxes

F5 x F3 → H3

H3 x F3 → F5



Metastable proposal

2-sphere

3-sphere

Metastable vacuum Kachru Pearson Verlinde

Add anti-D3 at tip

anti-D3 tunnel and annihilate D3 charge in flux

D3 charge in flux

 decay to BPS solution brane polarization
(Myers effect)



AdS-CFT modes        BDHM - BKLT

Normalizable modes  (NM)
dual to vevs

Finite energy, IR

Non-normalizable (NNM)
deformations of Lagrangian

Infinite energy, UV

Different NNM  ⇒  different theories

Same NNM  ⇒   different vacua, same theory

Energy

Normalizable

Non-Normalizable

r = 0

r =∞

metastable ⇔ NNM=0 



Big Question

Fluxes ⇒   KS field ~ log r

encodes log running of coupling constant

Anti-D3 couple to this field   
IIA intuition:  log messed up, ⇒ non-normalizable 

∀ non-conformal 4D dual has log modes

2 Another floating brane

This is an M2 wrapped on the S2 and zooming at ψ = t.

V BI =
�

(e2A − e2B)e4S = 8d21e
−6D (2.12)

after imposing the other floating conditions

FWZ = −dVWZ

dr
= 2Q2e

A−B−6D+2S = 4Q2d1 tanhFe−10D (2.13)

1

g21
− 1

g22
∼

�

S2

B2 ∼ log r (2.14)

3

Anti-D3 ⇒ normalizable or non-normalizable modes? 



Big Implications if NNM
anti-D3 SUSY breaking explicit, not spontaneous 

No AdS-CFT metastable 4D vacua

String cosmology/landscape:

 anti-D3 down long KS throats ➙  
 redshift ➙ tunably-small energy ➙
 lift AdS to dS                   KKLT, etc.
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By fine-tuning D, it is easy to have the dS minimum very close to zero. For the model W0 =
−10−4, A = 1, a = 0.1 D = 3× 10−9 we find the potential (multiplied by 1015):
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anti-D3 non-normalizable 
energy not tunably-small  
moduli stabilization messed up

R.I.P.



Big Implications
4D N=1 gauge theories - log running - 
generic phenomenon, not restricted to KS

Same happens in LARGE volume scenarios

No vacuum uplift by small-energy !
anti-D3 give O(1)contribution ! 

Landscape of AdS vacua
  
                                    Landscape of dS vacua



How can we show this ?

2-sphere

3-sphere

r = 0

r =∞

Solution(t)
SU(2)× SU(2)× Z2

Smear anti-D3’s



Perturbation theory in anti-D3 number

8 modes satisfying second-order eqs. 

16 integration constants 

expanded around BPS solution ⇒ 
first-order system:

Papadopoulos, Tseytlin 2000
Borokhov,Gubser 2002
Kuperstein, Sonnenschein 2003

2.1 The First Order Formalism

The starting point is the one dimensional Lagrangian

L = −1

2
Gab

dφa

dτ

dφb

dτ
− V (φ) (1)

which we require to have the simplifying property that it can be written in terms of a superpotential

L = −1

2
Gab

�dφa

dτ
− 1

2
Gac∂W

∂φc

��dφa

dτ
− 1

2
Gac∂W

∂φc

�
− 1

2

∂W

∂τ
, (2)

where

V (φ) =
1

8
Gab∂W

∂φa

∂W

∂φb
. (3)

The fields φa are expanded around their supersymmetric background value φa
0 (which will

correspond in our case to the Klebanov-Strassler solution [?])

φa = φa
0 + φa

1(X) +O(X2) , (4)

where X represents the set of perturbation parameters, and φa
1 is linear in them. The supersym-

metric solution φa = φa
0 satisfies the gradient flow equations

dφa

dτ
− 1

2
Gab∂W

∂φb
= 0 , (5)

while the deviation from the gradient flow equations for the perturbation φa
1 is measured by the

conjugate functions ξa, given by

ξa ≡ Gab(φ0)

�
dφb

1

dτ
−M b

d(φ0)φ
d
1

�
, M b

d ≡
1

2

∂

∂φd

�
Gbc∂W

∂φc

�
. (6)

The ξa are linear in the expansion parameters X, hence they are of the same order as the φa
1, and

when all the ξa vanish the deformation is supersymmetric.
The main point of this construction is that the equations of motion reduce to a set of first order

linear equations for (ξa,φa):

dξa
dτ

+ ξbM
b
a(φ0) = 0, (7)

dφa
1

dτ
−Ma

b(φ0)φ
b
1 = Gabξb . (8)

Note that equations (8) are just a rephrasing of the definition of the ξa in (6), while Eqs. (7) imply
the equations of motion [?].

2.2 Papadopoulos-Tseytlin ansatz for the perturbation

The KS background has SU(2) × SU(2) × Z2 symmetry. We are interested in a solution for the
backreaction of a smeared set of anti-D3 branes and we have the liberty to smear these branes
without breaking the Z2 symmetry (which exchanges the two copies of SU(2)). Furthermore

8



         Ze calcul
Solve first 8 equations for ξ. Integration constants X. 

Use ξ + other 8 eqs. to get ϕ. Integration constants Y

dim ∆ non-norm/norm int. constant
8 r4/r−8 Y4/X1

7 r3/r−7 Y5/X6

6 r2/r−6 X3/Y3

5 r/r−5 −−−
4 r0/r−4 Y7, Y8, Y1/X5, X4, X8

3 r−1/r−3 X2, X7/Y6, Y2

2 r−2/r−2 −−−

X2 and X7 ~ 1/r          non-normalizable



            Ze force !!!
16 constants - 14 physical ones

Probe D3 brane attracted by anti-D3’s

Force is universal: KKLMMT 

We get

Only depends on 1 of the 14 constants !!!

Only force-mode is ξ1

As we will show in detail in section 4, it is rather straightforward to compute the UV asymptotic
expansion of ξ̃1 by expanding the integrand in (53) for large values of τ :

ξ̃1 = X13(1− 4τ)e−4τ/3 +O(e−10τ/3) (47)

By expanding in the ultraviolet e−2x0 as well

e−2x0 =
8

3P 2(4τ − 1)
+O(e−2τ ) , (48)

we can see that the UV expansion of the force felt by a probe D3 brane in the first-order perturbed
solution is always

Fτ ∼ X1e
−4τ/3 +O(e−10τ/3) . (49)

Recalling that in the UV, τ is related to the canonical radial coordinate

r = eτ/3 , (50)

it follows that

Fr ∼
X1

r5
+O

�
1

r11

�
(51)

and thus the potential goes like

V ∼ C +
X1

r4
. (52)

Having obtained this simple universal result, we pause to consider its physical implications. First,
the force is largely independent of which modes perturb the KS solution and on whether these
modes are normalizable or non-normalizable; it may be zero in certain solutions (such as [?],
where X1 = 0) but when non-zero it has a universal form (51). Out of the 14 physically-relevant
SU(2)× SU(2)× Z2-preserving perturbation parameters, only one enters in the force.

Second, this result agrees with that obtained in [?]. In that paper, the force felt by a probe
anti-D3 brane in KS with D3 branes at the bottom was shown to scale like 1/r5 and to be linear
in the D3 charge. It was also argued using Newton’s third law that the same force should be felt
by a probe D3-brane in KS with anti-D3 branes at the bottom. Our result implies therefore that
in order to describe anti-D3 branes in the infrared, one must have a nontrivial ξ̃1, and furthermore
that the constant X1 must be proportional to the number of anti-D3 branes.

We would also like to note that in the ultraviolet the mode (in the φi) proportional to X1 is
a normalizable mode decaying as r−8, in fact this is the most convergent of the 14 modes. The
necessity for having such a mode in order to find the r−5 force predicted by [?] was discussed in [?],
although the mode itself was not identified. However, the force analysis alone in no way supports
or disfavors the possibility that an anti-D3 brane sources a non-normalizable mode. The force has
exactly the same r-dependence regardless of whether non-normalizable modes are turned on or
not. Hence, the cancelation of terms in the force up to order 1/r4 is universal.

4 The Space of Solutions

In this section we find the generic solution to the system (17-33), which depends on sixteen inte-
gration constants (although only fourteen are physical). As we will see, the full solution involves
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Ze stratégie 

Cannot a-priori decide NNM=0

Physical IR boundary conditions

Nonzero ξ1

Try to see whether NNM can be zero.

Cannot a-priori fix both NM and NNM  

IR physics (e.g. incoming waves at horizon) 

Fix relation between NM and NNM ⇒ physics

Usual 
AdS-CFT  

Here



Look in the infrared
Kill very divergent guys + ξ1 must be nonzero !!!

Physical divergence: anti-D3 smeared on S3

Warp factor diverges

Curvature diverges: R ∼ F 2
(5) ∼ τ−4

∼ τ−1

H
2
(3) ∼ F

2
(3) ∼ τ

−2 Must be there !!!

Another divergence - no obvious reason

Subleading singularity ~ ξ1

Everything depends on it !!!



Anti-D3 in KS is normalizable 

Dual to gauge theory metastable vacuum 

Nice physics - vev’s etc.

Hunt for gauge theory dual

If singularity physical:

Dymarsky
Klebanov 
Seiberg

AdS upliftable to dS

KKLT, LVS, etc.     alive and frisky



If singularity unphysical:
anti-D3 has non-normalizable modes

IR coupling to log mode ( H3 ) - mess up UV
 
  

Reminder -BPS solution:

F5 x F3 → H3

H3 x F3 → F5
2-sphere

3-sphere



If singularity unphysical:

anti-D3 
dissolved in flux

(-F5) x  F3   →  - H3

(-H3) x  F3  →  - F5

Sign of D3 charge dissolved in flux not fixed !!!

Only F3 flux on S3 fixed. 

Solution for anti-D3 is anti-KS !!!



Is singularity physical ?
Fate of dS dependeth on singularity

If not physical:

find new ways of constructing  deSitter

maybe no more landscape

lots of work needs to be redone

brane of codimension 6 + fluxes → log modes 

So it must be physical !!!
Proof   by 

wishful thinking



Is singularity physical ?

One should a-priori take only normalizable modes in 
UV, and accept whatever exists in the IR

Maybe, but not in AdS-CFT  ☺

IR regularity crucial to relate NNM with NM. 
Otherwise get wrong physics:

AdS-QCD without incoming b.c. at black hole

Confinement from Klebanov-Tseytlin

Incorrect AdS-CFT



No brane 
interpretation

Is singularity physical ?
Maybe divergence has brane interpretation

anti-D3 polarizes into NS5 branes. Source H3

Wrong  legs. Also divergent F3 and no D5 brane

No brane 
interpretation

NS5 branes wrap S2 inside S3. Tunnel to BPS solution. 

Brane-flux annihilation.  Smearing → Singularity ?

Our singularity linear in anti-D3 brane number

Brane-flux annihilation nonlinear in anti-D3 number.



Is singularity physical ?
Integral of divergent energy density is finite ! 

We can be agnostic about origin of singularity 

Accept everything with finite IR action

After all, AdS-CFT relates bulk and boundary actions

Negative-mass Schwarzschild

Integral of divergent energy density is finite 

Must be eliminated if AdS-CFT is to make any sense

Klebanov

Counter-argument:
Horowitz-Myers



Is singularity physical ?

Two divergences in the infrared:

Smeared anti-D3  →  physical:   

Unphysical + subleading:

Leading divergence resolved in string theory.

Resolution may also cure unphysical divergence.

Throw to the garbage !

R ∼ F 2
(5) ∼ τ−4

H
2
(3) ∼ F

2
(3) ∼ τ

−2

Nobody could have predicted it a-priori !

No a-posteriori physical reason for accepting it 

One more chance !



How can we check this ?
MAY CURE ≠ WILL CURE 

ξ1 needed to attract D3 branes

anti-D3 or some brane-attracting piece of junk ? 

Force by anti-D3 on probe D3 known        KKLMMT

Does ξ1 give correct force per anti-D3 number ?

Messy numerical integrals
YES

NO
Physical singularity.

Too much coincidence otherwise

Singularity most likely unphysical



Conclusions
IR singularity → anti-D3 branes in KS likely 
source non-normalizable modes

Need final nails in coffin: numerics, nonlinear

Extend to other systems → generic ? 

A lot of string cosmology to be revisited

Find new ways of constructing  deSitter

Find new ways of uplifting AdS to dS

AdS landscape ≠  dS landscape


