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• Conformal Interfaces/Defects:    what 
are they good for?

• Loop operators in WZW models and 
universal matrix model

• Reduction to GKO models

• Distances between CFTs

• Outlook

Outline

 CB, Brunner, Douglas, Rastelli, in progress



  Conformal Interfaces/Defects 

CFT1 CFT2

Interface

conformal if  
(no energy flow to interface)

special cases:

boundary

defect

topological

CFT2 = ∅

CFT1 = CFT2

T++ , T−− separately continuous

is continuous   
Tστ = T++ − T−−



Folding: boundary of special (tensor) CFTs

CFT 1 ⊗ CFT 2
CFT2

CFT1

interface = 

In this talk:  focus on conformal defects , described by

* A n-dimensional space of quantum states

* An interaction Hamiltonian              which  
is an  n x n  matrix with entries depending 

on the local bulk fields

Himp



defect

boundary

time

Exchanging the roles of space and time:

Associate a state of the
 CFT on the circle, such that

Associate an operator acting 
on the states of the CFT

(T++ − T−−)|B〉 = 0 .

Note:  Defect operator        Wilson loop of gauge theories (“quark defect”)∼

[T++ − T−−,O] = 0

O = tr(Pe−i
H

Himp)



e.g. for non-linear      -model,  general scale-invariant defect:

∫

C
dsHimp =

∫

C
dζα [∂α�·B(�) + εαβ∂β�·C(�)]

σ

≡
∫

dζαWα

matrix-valued vector fields
(doubling degrees of freedom)

∂αWβ − ∂βWα + [Wα,Wβ ] = 0Flat connection

pull-back form

=⇒ classically topological

Main problems: * Quantization (RG flows, fixed points)

* Fusion (analog of OPE ?)



Why interesting ?

• Impurities in condensed-matter systems    
(quantum dots)   

  Fisher, Kane ‘92
  Affleck, Oshikawa ’96 . .....

• Natural (non-local) observables of CFT   

  e.g. Drukker, Gaiotto, Gomis  ‘10

• Spectrum-generating symmetry of (O)SFT ?   
  Graham, Watts ‘03

  Frohlich, Fuchs, Runkel, Schweigert ’04, ’06
CB, Brunner ‘08

NB:  perturbative symmetries generated by topological  g=1 
defects, but “algebra” includes non-invertible g>1 symmetries   

  CB ‘08
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  Gauged  WZW  models 

IGKO(g, A) = IWZW(g) +
k

2π

∫

Σ
Tr′ (A+g−1∂−g + A−g∂+g−1 + A+g−1A−g −A+A−)

IWZW =
k

16π

∫

Σ
Tr′ (∂αg ∂αg−1)− k

24π

∫

B
Tr′ (g−1∂αg g−1∂βg g−1∂γg) εαβγ

Tr′(XY ) = trR(XY )/xR

g ∈ G A± ∈ h := Lie(H) ⊆ gfields: ,

where

  Gawedzki, Kupiainen ‘88
  Karabali, Park, Schnitzer, Yang ‘89 

G/H

largest class of exact CFTs



g → hgh−1 and Aα → hAαh−1 + h∂αh−1gauge invariance:

the (non-local) field redefinition A− := h1∂−h−1
1 and A+ := h2∂+h−1

2

gives (Polyakov-Wiegman) :

IGKO(g,A) = IWZW(h−1
1 gh2)− IWZW(h−1

1 h2)

g̃ h̃

∂±JG
∓ = ∂±JH

∓ = 0

JG
±

∣∣∣
h

= JH
±

JH
± = ∓ik ΛH

⇔g−1D−g
∣∣∣
h
= gD+g−1

∣∣∣
h
= 0

D+(g−1D−g) = 0

F (A) = 0

Field equations:

constant in Cartan

A

B



Quantization:

GKO 

Ja
−(σ) =

∑

n∈Z

Ja
n e−inσ with [Ja

n , Jb
m] = ifabcJc

n+m + kn δabδn+m,0

A

B

:   operator equations

:   (weak) conditions on physical states 

Ja
n |phys〉 = 0 ∀ Ja

n ∈ ĥ(+)ĥ = ĥ(−) ⊕ ĥ(0) ⊕ ĥ(+) ,

Lg
(ν,k) =

⊕

γ

Lh
(γ,xk) ⊗ Lg/h

[ν,γ]state space :

BRST quantize separately  

impose conditions via BRST cohomology  

ĝk and ĥ−xk−2ȟh

  Karabali, Schnitzer ‘90

  Hwang, Rhedin ‘93



  Defects  in WZW  models 

(W− , W+) = ( Ma(g)J a
− , M̄a(g)J a

+ )

J− = ik g−1∂−g , J+ = ik g∂+g−1currents:

generic scale-invariant defect:

2 dim(g)× dim(V )× dim(V )
coupling functions

H ⊆ (Gleft ×Gright)

Can reduce coupling-space by imposing symmetry under

or under its affine extension



V  must carry a representation R  of  H , and under transformation of bulk fields

Wα → R(Ω)Wα R(Ω)−1 + R(Ω)∂α R(Ω)−1

in affine case

classically :

To reduce to finite parameter space,  need a transitive symmetry
e.g.  global left symmetry g(ζα)→ Ω g(ζα) , Ω ∈ Gleft

=⇒ Ma(g) = − i

k
R̄(g)Ma R̄(g−1) and M̄a(g) = − i

k
[Adj(g−1)]ab R̄(g) M̄ b R̄(g−1)

constant 
matrices



for full  affine left symmetry 

Ma(g) = − i

k
R̄(g)Ma R̄(g−1) and M̄a(g) = − i

k
T̄ a

generators in R̄

except when        is the trivial representation,  in which case R̄
Classically topological, but don’t know how to quantize in general (?) 

Wholo = − i

k
MaJ a

− dζ−

couples only to right currents,  not to g

Since form fixed by symmetry, must be preserved by RG flow 

=⇒ gradient flow of entropy-function

dMa

d logε
= −∂S0(M1, · · · MdimG)

∂Ma



S0(Ma) [ more generally                           ? ]             SR(Ma, M̄a)

S0 =
1
8k

∑

a,b

Tr([Ma, M b]2)− 1
6k

∑

a,b,c

ifabcTr(Ma[M b, M c]) + O(1/k2)

 In perturbation theory:                

  Alekseev, Recknagel, Schomerus ‘00

scheme-dependent  Monnier ‘05

  Is there a scheme in which it is integrable?                

 * Critical points even at leading order not  fully mapped out                 

  (potential in NADBI action)                

 Universal matrix model                  



further symmetry reductions within the space of         :

Global H ⊆ Gright symmetry =⇒
the             must form invariant  H-tensors:Ma

MaJ a
− =

∑

j

ΘjJ j
− +

∑

s

Θ̃sJ s
−

R⊗R∗ ⊗ h R⊗R∗ ⊗ g/h

invariant 
tensors in

Affine symmetry =⇒Ĥ ⊆ Ĝright

Θj = Θj
R H-generators in R

Ma



Regularization  (current-frequency cutoff)

preserves * global  H  symmetry 

[L0 , Oren(M)] = 0* cylinder translations 

[Jj
0 , Oren(M)] = 0

breaks manifest * affine  H  symmetry ^
[Jj

n , Oren(M)] = 0 ?

0 = F j(Θ, Θ̃) = (Θj −Θj
R) + O(1/k)

central in envelopping
 algebra       

adjust couplings order by order:

possible ?
* no anomaly in 0+1 dimension

* explicit proof at RG fixed points
Alekseev, Monnier  ‘07



A generic flow diagram

Kondo flow

Fredenhagen-Schomerus ‘02

The  FS flows  take place on a         invariant subspace ĥk

They descend to flows in the GKO coset models  

ĥ ⊂ ĝ

gonly    currentsĥ

Og
ROh

R

1

[when  R=complete  G-representation]



H =
∫ ∞

0
dr

[
!J · !J

2π(k + 2)
+

!̃J · !̃J

2π(k + 2)
+ λ!Simp · !J δ(r) + charge + flavor

]
In appropriate units forget

The  IR  fixed point is then given by spectral flow from the UV fixed point 

λ = 0 λ =
1

k + 2

Ja
n Ja ′

n = Ja
n + Sa

imp

H ∝ !J · !J H ∝ !J ′ · !J ′ + constant

Kondo flow for G=SU(2)

Famous problem: screening of magnetic impurity by conduction electrons
Wilson; Nozières; Andrei; Wiegman; Affleck-Ludwig
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G = SU(2)× SU(2) H = SU(2)diag
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G = SU(2) H = O(2)



 gauge- invariant defects of G/H model must obey:  

Wα → R(h)Wα R(h)−1 + R(h)∂α R(h−1)

arbitrary, not just
 in loop group      

W =
∑

j

Θj
RAj

α dζα +
∑

a

Θ̃a (g−1D−g)a dζ− simple choice:  

minimal coupling      transforms homogeneously if       

Θ̃a

g⊗R⊗R∗
h=     -invariant tensor in      

NB can check that       is flatW =⇒  classically-topological for any Θ̃a

  Reduction, and q-monodromies



h2 = 1 =⇒ A+ = 0 In the gauge  

ikW− =
∑

j

[
Θj

R(JH
− )j + Θ̃j(JG

− − JH
− )j

]
+

∑

s

Θ̃s(JG
− )sW+ = 0 ,

 one finds  

 0  in GKO  

 i.e. precisely the form of the      -invariant WZW defects  ĥ

Ĝleft × Ĥright

Notice that for WZW models, the restriction of RG flow
 to a finite # of parameters was dictated by symmetry                           

This restriction is non-trivial in the GKO coset models                           



Θ̃s = 0 Θ̃s = Θs
R Loops at special values   and  measure classical monodromies :  

h̃(ζ+, ζ−) = h̃−1
+ (ζ+) h̃−(ζ−) and g̃(ζ+, ζ−) = g̃−1

+ (ζ+) g̃−(ζ−)

 General solution:  

h̃±(ζ± ± 2π) = uH h̃±(ζ±) and g̃±(ζ± ± 2π) = uG g̃±(ζ±) with  

Oh
R = trR(uH) Og

R = trR(uG) ,  =⇒

Og
µ =

Sg
µν

Sg
0ν

1 , Oh
µ =

∑

α

bµα
Sh

αγ

Sh
0γ

1 on Lg/h
[ν,γ]

 Quantum operators can be constructed explicitly, and commute 
with the vertex-operator algebra of the coset model  

highest weight       branching coefficients      



 Fusion in WZW models:  

Og
σOg

µ =
∑

ν

N ν
σµ Og

ν Og
νBg

0 = Bg
ν and  

boundary state       

dim(S)1→ Og
σ Defect flow   imprints  universal  boundary flows  

dim(S)Bg
µ →

∑

ν

N ν
µσ Bg

ν
Affleck-Ludwig “absorption

 of boundary spin” rule     

∑

α

bµα

∑

J

(N[0,α]) J
I BJ !→

∑

J

(N[µ,0]) J
I BJ

 Similarly coset-defect flows imply the Fredenhagen-Schomerus flows  

generalized Affleck-Ludwig rule     

 Quantum Symmetries of OSFT



  Distance(s) between CFTs

Why? One reason: prove compactness of CY moduli space for fixed volume.  

A nice candidate:  

 M.Douglas,  arXiv:1005.2779 [hep-th]

d(T1, T2) = [minU log gU (T1, T2)]1/2

conformal interface       

log g =
π2

2
∆tj∆tkg(Z)

jk + O(∆t3)

Reduces to Zamolodchikov metric for nearby theories:



In c=1 case:
d2(R1, R2) = log

R2
1 + R2

2

2R1R2

obeys triangle inequality.

d2(t1, t2) = K(t1, t̄1) + K(t2, t̄2)− 2 log |
∫

M
Ω1 ∧ Ω̄2|

But for general large-volume CY threefolds:

Calabi diastatic function

fails triangle inequality.  By finite amount?

Work in progress ......



• CM realizations of FS flows ?

• Extension to non-compact CFTs ?

• How do these quantum symmetries 
of OSFT fit into a larger structure? 

Summary+Outlook

Thank you!

Derived largest known class of (FS) defect flows, by
reduction to finite-d matrix model  


