High energy collisions of black holes

ふ Vítor Cardoso (CENTRA/IST & PI) • Crete • 2014 み

erc supports this project

BH dynamics

Brito, Fujita, Nerozzi, Okawa, Pani, Rocha (Sperhake, Witek, Zilhão) Barausse, Berti, Emparan, Gualtieri, Khanna, Herdeiro, Mateos, Pretorius, Yunes (Cardoso, Gualtieri, Herdeiro, Sperhake, Living Reviews in Relativity (2014))

* * *

PRL 103:131102 (2009) 103:239001 (2009) 105:261102 (2010) 107:031101 (2011) 109:131102 (2012) 111:041101 (2013) 111:11101 (2013) PRD 81:084052 (2010) 81:104048 (2010) 82:104014 (2010) 83:024037 (2011) 83:104048 (2011) 85:124062 (2012) 87:124020 (2013)

Why study dynamics

Gravitational-wave detection, GW astrophysics

Mathematical physics

High-energy physics

Typical signal for coalescing binaries

Typical stretch of data

A needle in a haystack!..burn the hay?

$$(h_1|h_2) \equiv 2 \int_0^\infty \frac{\tilde{h}_1^*(f)\tilde{h}_2(f) + \tilde{h}_1(f)\tilde{h}_2^*(f)}{S_h(f)} df$$

$$\rho_{\rm MF} = \max_{\vec{\lambda}} \frac{(T\{\vec{\lambda}\}|h)}{\sqrt{(T\{\vec{\lambda}\}|T\{\vec{\lambda}\})}}$$

Why study dynamics

Gravitational-wave detection, GW astrophysics

Mathematical physics

High-energy physics

Cosmic Censorship: do horizons always form?

*

Are black objects always stable? Phase diagrams...

Universal limit on maximum luminosity c^5/G (Dyson '63)

*

Critical behavior, resonant excitation of QNMs?

*

Test analytical techniques, their predictions and power (Penrose '74, D'Eath & Payne '93, Eardley & Giddings '02)

Why study dynamics

Gravitational-wave detection, GW astrophysics

Mathematical physics

High-energy physics

"An imploding object forms a BH when, and only when, a circular hoop with circumference 2π the Schwarzschild radius of the object can be made that encloses the object in all directions."

Large amount of energy in small region

Size of electron: 10^(-17) cm Schwarzschild radius: 10^(-55) cm

$2M/R = 1/20 \Longrightarrow \gamma_{\rm crit} \sim 10$

(Choptuik & Pretorius 2010, East & Pretorius 2012, Rezzolla & Takami 2012)

Black holes do form in high energy collisions

also Choptuik & Pretorius, 2010

*

Transplanckian scattering well described by BH collisions! (?)

¥

How to go around and study BH collisions?

Take two free particles, changing abruptly at t=0

$$T^{\mu\nu} = \sum_{i=1,2} \frac{P_i^{\mu} P_i^{\nu}}{E_i} \delta^3(x - v_i t) \theta(-t) + \frac{P_i^{'\mu} P_i^{'\nu}}{E_i^{'}} \delta^3(x - v_i^{'} t) \theta(-t)$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \qquad h_{\mu\nu} = 4 \int \frac{T_{\mu\nu}(t_r, x') - 1/2\eta_{\mu\nu}(t_r, x')}{|x' - x|} d^3x'$$

$$\frac{dE}{d\omega d\Omega} = \frac{M^2 \gamma^2 v^4}{\pi^2} \frac{\sin^4 \theta}{(1 - v^2 \cos^2 \theta)^2}$$

Radiation isotropic in the UR limit, multipole structure $E_l \propto \frac{1}{l^2}$ Functional relation $E_{rad}(\gamma)$, flat spectrum Roughly 65% of maximum possible at $\gamma=3$ With cutoff M $\omega\approx$ 0.4 we get 25% efficiency for conversion of gws

(M. Lemos, MSc 2010; Berti et al 2010)

Perturbation theory (Regge & Wheeler '57; DRPP '71; Cardoso & Lemos '02)

Metric=Schwarzschild + small perturbation due to infalling particle

$$\tilde{h}_{\mu\nu} = \begin{bmatrix} H_0(r)f & H_1(r) & 0 & 0 \\ H_1(r) & H_2(r)/f & 0 & 0 \\ 0 & 0 & r^2 K(r) & 0 \\ 0 & 0 & 0 & r^2 K(r) \sin^2 \theta \end{bmatrix} Y_{l0}(\theta)$$

$$\frac{d^2\Psi}{dr_*^2} + \left(w^2 - V\right)\Psi = \left(1 - \frac{2M}{r}\right)S(\omega, r)$$

$$\frac{V}{1 - 2M/r} = \frac{2\lambda^2(\lambda + 1)r^3 + 6\lambda^2 r^2 M + 18\lambda r M^2 + 18M^3}{r^3(3M + \lambda r)^2}$$

$$S(\omega, r) = \frac{4i\mu\lambda\sqrt{4\ell+2}}{\omega(3M+\lambda r)^2}e^{-i\omega r_*}, \quad \lambda \equiv \frac{(\ell-1)(\ell+2)}{2}$$

Velocity		Radiated energy	Area theorem
0	Point particle	$E_{\rm rad} = 0.010 \frac{\mu^2}{M}$	$E_{\rm rad} < \frac{\mu^2}{M}$
	Equal mass	$E_{\rm rad} = 0.00065M$	$E_{\rm rad} < 0.29M$
1	Point particle	$E_{\rm rad} = 0.26 \frac{(\mu\gamma)^2}{M}$	$E_{\rm rad} < \frac{(\mu\gamma)^2}{M}$
	Equal mass	$E_{\rm rad} = 0.13M$	$E_{\rm rad} < M$

 $dE/d\omega$ flat at sufficiently low ω , multipole $E_l \propto rac{1}{l^2}$

Roughly 65% of maximum possible at $\gamma=3$

(Berti et al, 2010)

Generic D

(Kodama & Ishibashi '03; Berti, Cardoso & Kipapa, 2010)

v=1: $dE/d\omega \propto \omega^{D-4}$ agrees with ZFL

Trapped surface formation

(Penrose '74; Eardley & Giddings '02; Kohlprath & Veneziano '03)

Superpose two Aichelburg-Sexl metrics, find future trapped surface

Upper limit on gravitational radiation: 29% M

Perturb superposed A-S metric, correction: 16% M

(D'Eath & Payne '90s)

Numerical evolution

GR: "Space and time exist together as Spacetime"

Numerical relativity: reverse this process! (*Okawa's talk*) ADM 3+1 decomposition

Arnowitt, Deser, Misner (1962); York (1979); Choquet-Bruhat, York (1980)

3-metric γ_{ij} lapse α shift β^i

lapse, **shift** \Rightarrow Gauge

$$\begin{aligned} \partial_t \gamma_{IJ} &= \beta^M \partial_M \gamma_{IJ} + \gamma_{MJ} \partial_I \beta^M + \gamma_{IM} \partial_J \beta^M - 2\alpha K_{IJ} ,\\ \partial_t K_{IJ} &= \beta^M \partial_M K_{IJ} + K_{MJ} \partial_I \beta^M + K_{IM} \partial_J \beta^M - D_I D_J \alpha + \alpha \left(\mathcal{R}_{IJ} + K K_{IJ} - 2 K_{IM} K^M _J \right) \\ &+ 8\pi \alpha \left(\frac{S - \rho}{D - 2} \gamma_{IJ} - S_{IJ} \right) - \frac{2}{D - 2} \alpha \Lambda \gamma_{IJ} ,\\ 0 &= \mathcal{R} + K^2 - K^{MN} K_{MN} - 2\Lambda - 16\pi \rho ,\\ 0 &= D_I K - D_M K^M _I + 8\pi j_I . \end{aligned}$$

Brill-Lindquist:

$$K_{IJ} = 0, \quad \gamma_{IJ} dx^{I} dx^{J} = \psi^{4/(D-3)} \delta_{IJ}, \quad \psi = 1 + \sum_{A} \frac{\mu_{A}^{D-3}}{4 \left[\sum_{K=1}^{D-1} (x^{K} - x_{0}^{K})^{2} \right]^{(D-3)/2}}$$

Bowen-York:

$$\begin{aligned} \gamma_{ij} &= \psi^{4} \bar{\gamma}_{ij} \\ K_{ij} &= A_{ij} + \frac{1}{3} \gamma_{ij} K \,, \quad A^{ij} = \psi^{-10} \bar{A}_{ij} \quad \Leftrightarrow \quad A_{ij} = \psi^{-2} \bar{A}_{ij} \\ \bar{A}_{ij} &= \frac{3}{2r^{2}} \left[P_{i} n_{j} + P_{j} n_{i} - (f_{ij} - n_{i} n_{j}) P^{k} n_{k} \right] + \frac{3}{r^{3}} \left(\epsilon_{kil} S^{l} n^{k} n_{j} + \epsilon_{kjl} S^{l} n^{k} n_{i} \right) \end{aligned}$$

LEAN code (Sperhake '07)

Based on the Cactus computational toolkit

BSSN formulation (ADM-like, but strongly hyperbolic)

Puncture initial data (Brandt & Brügmann 1996)

Elliptic solver: TwoPunctures (Ansorg 2005)

Mesh refinement: Carpet (*Schnetter '04*)

Numerically very challenging!

Length scales: $M_{ADM} \propto \gamma \; M_0$

Horizon Lorentz-contracted "Pancake"

Mergers extremely violent

Substantial amounts of unphysical "junk" radiation

Most important result: Emitted gravitational waves (GWs)

Newman-Penrose scalar:

 $\Psi_4 = C_{\alpha\beta\gamma\delta} n^{\alpha} m^{\beta} n^{\gamma} m^{\delta}$

Complex \rightarrow 2 free functions

GWs allow us to measure:

Radiated energy E_{rad} Radiated momenta P_{rad} , J_{rad} Angular dependence of radiation Predicted strain h_+ , h_x

Rest

(Witek et al, arXiv:1006.3081 [gr-qc])

High energy head-ons

(Sperhake et al 2008)

Waveform is almost just ringdown

Spectrum is flat, in good agreement with ZFL

Cutoff frequency at the lowest quasinormal frequency

Grazing collisions

(Sperhake et al 2009)

Plunge, zoom-whirl and scattering

(Sperhake et al 2009)

More than 25% CM energy radiated for v=0.75 c!

Final BH rapidly spinning

Light ring & QNMs

How far can we go?

Sperhake, Berti, Cardoso and Pretorius 2013

"Matter does not matter"

Sperhake, Berti, Cardoso & Pretorius 2013

Cosmic Censor: as strong as ever

Production Cross-section: b/M=2.5/v

Peak luminosity: Close to Dyson limit c^5/G

Maximum spin: >0.95

Radiated energy: >40% CM (but <50%)

Junk: ~2 Erad, interesting topic for further study Radiation: Almost just ringdown, relation with ZFL...

Extensions

Axial symmetry

Can be reduced to effective 3+1 (Zilhão et al, 2010)

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} + e^{2\phi}d\Omega_{D-4}^{2}$$

$$\mu = 0, 1, 2, 3$$

D-dimensional Einstein equations imply

$$e^{2\phi} \left[(D-4)\partial^{\alpha}\phi\partial_{\alpha}\phi + \nabla^{\alpha}\partial_{\alpha}\phi \right] = D - 5$$
$$R_{\mu\nu} = (D-4) \left[\nabla_{\nu}\partial_{\mu}\phi + \partial_{\mu}\phi\partial_{\nu}\phi \right]$$

(Zilhão et al, 2010)

Effective 3+1 system with sources

$$\begin{aligned} \left(\partial_{t} - \mathcal{L}_{\beta}\right)\gamma_{ij} &= -2\alpha K_{ij} \\ \left(\partial_{t} - \mathcal{L}_{\beta}\right)K_{ij} &= -D_{i}\partial_{j}\alpha + \alpha \left[{}^{(3)}R_{ij} + KK_{ij} - 2K_{ik}K_{j}^{k} \right] \\ -\alpha(D-4)\left(D_{i}\partial_{j}\phi - K_{ij}K_{\phi} + \partial_{i}\phi\partial_{j}\phi \right) \\ \left(\partial_{t} - \mathcal{L}_{\beta}\right)\phi &= -\alpha K_{\phi} \\ \left(\partial_{t} - \mathcal{L}_{\beta}\right)K_{\phi} &= \alpha \left[(D-5)e^{-2\phi} - (D-4)\partial_{i}\phi\partial^{i}\phi \right] \\ +\alpha \left[(D-4)K_{\phi}^{2} + KK_{\phi} - D^{i}\partial_{i}\phi \right] - \partial^{i}\alpha\partial_{i}\phi \end{aligned}$$

(Witek et al, 2010)

Wave extraction

$$ds^{2} = \text{Tangherlini} + \delta g_{AB}$$

$$\delta g_{ab} = h_{ab} = f_{ab}S$$

$$\delta g_{a\bar{i}} = h_{a\bar{i}} = rf_{a}S_{\bar{i}}$$

$$\delta g_{\bar{i}\bar{j}} = h_{\bar{i}\bar{j}} = 2r^{2}(H_{L}\gamma_{\bar{i}\bar{j}}S + H_{T}S_{\bar{i}\bar{j}})$$

$$H_{L}(t,r) = \frac{1}{2(D-2)r^{2}}\int d\Omega^{D-2} \left[h_{\bar{\theta}\bar{\theta}} + \frac{D-3}{\sin^{2}\bar{\theta}}h_{\theta\theta}\right]S_{l}$$

$$= \frac{1}{2(D-2)r^{2}}\frac{\mathcal{A}_{D-3}}{\sqrt{K^{1D}}}\int_{0}^{\pi} d\bar{\theta}(\sin\bar{\theta})^{D-3} \left[h_{\bar{\theta}\bar{\theta}} + \frac{D-3}{\sin^{2}\bar{\theta}}h_{\theta\theta}\right]C_{l}^{(D-3)/2}$$

$$H_{T}(t,r) = \frac{1}{2r^{2}(k^{2}-D+2)}\int d\Omega^{D-2} \left[h_{\bar{\theta}\bar{\theta}} - \frac{1}{\sin^{2}\bar{\theta}}h_{\theta\theta}\right]\mathcal{W}_{l}$$

$$= \frac{1}{2r^{2}(k^{2}-D+2)}\frac{\mathcal{A}_{D-3}}{\sqrt{K^{1D}}}\int_{0}^{\pi} d\bar{\theta}(\sin\bar{\theta})^{D-3} \left[h_{\bar{\theta}\bar{\theta}} - \frac{1}{\sin^{2}\bar{\theta}}h_{\theta\theta}\right]W_{l}$$

Don't trust our results? 4e-04 LIS KYO 3e-04 dE / dt (M^{-1/2}) 2e-04 1e-04 0e+00 ⊑ 0 50 25 100 75 $(t - r_{ex}) / r_{S}$

(Witek, Okawa et al, 2010)

D	E/M(%)	$E^{\text{area}}/M(\%)$	$E_{\rm ext}^{\rm PP} M/\mu^2$	$P_{\rm ext}^{\rm PP} M/\mu^2$
4	0.055	29.3	0.0102	0.00083
5	0.089	20.6	0.0160	0.0024

(Witek et al 2010; Berti et al 2010)

BH collisions are a fascinating topic in GR

Cosmic Censorship preserved

Much remains to be done:

Understand initial data, add charge, go to higher boosts,

higher dimensional spacetimes, compactified EDs, anti-de Sitter

Thank you

