Momentum dissipation and charge transport in holography

Richard Davison, Leiden University

CCTP Seminar, April 15th 2014

<u>Based on</u>: 1306.5792 [hep-th] by RD, 1311.2451 [hep-th] by RD, K. Schalm, J. Zaanen, and work by many others.

Overview: Some history

- Holography: some strongly coupled quantum field theories can be rewritten as classical theories of gravity in higher-dimensional spacetimes.
- Solutions of the gravitational theory correspond to equilibrium states of the field theory (e.g. black holes = thermal states) and excitations of these gravitational solutions encode the transport properties of the dual field theory.
- Try to learn general lessons, to help understand the transport properties of real, strongly interacting thermal states (e.g. the quark-gluon plasma).

Policastro, Son, Starinets, Herzog, etc.... 2001+

Overview: AdS/CMT

- There are many other real systems whose transport properties are not understood e.g. some strongly correlated electron systems.
- Holographic toy models of these states are charged black holes: dual to field theory states with a non-zero charge density.
- These states exhibit emergent quantum criticality at low energies. They transform very simply under rescalings of space and time.
- Holography lets us study the physics of quantum critical states of matter, in a controlled and simple way.

Overview: Transport in AdS/CMT

- Conceptually, the simplest transport property is the electrical conductivity $\sigma(\omega, T)$. It is also relatively easy to measure.
- But for the holographic theories just described

$$\sigma_{DC} \to \infty$$
 $\sigma(\omega) \sim \delta(\omega)$

- This is because these theories have a conserved momentum: a small current cannot dissipate, because it carries momentum.
- To get a realistic answer, we have to incorporate a mechanism by which the charge can dissipate momentum. In this talk, I will describe simple ways to do this.

Outline of this talk

- Basic technology and properties of holographic theories
- Explicit translational symmetry breaking and massive gravity
- A simple mechanism for resistivity=entropy
- Conclusions

Basic technology of holography I

- A gravitational theory will have an action $S[g_{\mu\nu}, A_{\mu}, \phi, \ldots]$
- Each field in the gravitational theory encodes the dynamics of an operator in the dual field theory:

Gravity field

 $g_{\mu\nu}(r,t,\vec{x}) \longleftrightarrow T^{\mu\nu}(t,\vec{x})$ $A_{\mu}(r,t,\vec{x}) \longleftrightarrow J^{\mu}(t,\vec{x})$ $\phi(r,t,\vec{x}) \longleftrightarrow \mathcal{O}_{\phi}(t,\vec{x})$

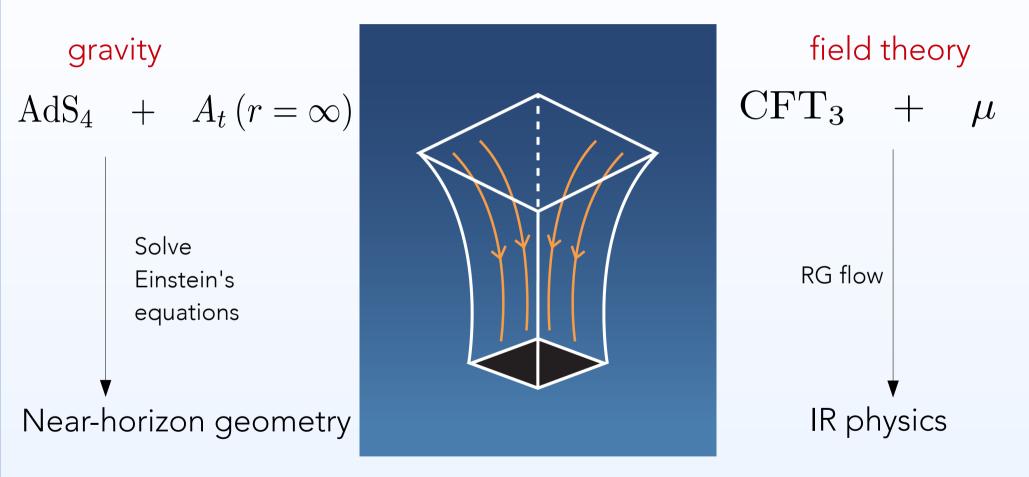
Field theory operator

 Gauged symmetries in the gravitational theory correspond to global symmetries in the field theory:

Diffeomorphism invariance: $\partial_{\mu}T^{\mu\nu} = 0$ U(1) gauge invariance: $\partial_{\mu}J^{\mu} = 0$

Basic technology of holography II

extra co-ordinate r = energy scale



Emergent and local quantum criticality

- The specific IR physics depends on the gravitational action. Generically, the near-horizon metric is covariant under a scaling symmetry $t \to \lambda t$, $\vec{x} \to \lambda^{\frac{1}{z}} \vec{x}$ z: dynamical critical exponent
- In the IR, there is emergent quantum criticality, which can violate hyperscaling.
- In holography, the simplest examples have $z \to \infty$. These exhibit local quantum criticality. The dual geometries are conformal to $AdS_2 \times R^2$.
- For $z \to \infty$, the IR physics is approximately momentum-independent, and low energy excitations exist at all momenta.

Linear response from holography

• The linear response of these field theories to perturbations is controlled by the linear excitations around the gravitational solutions $g_{\mu\nu} \rightarrow g_{\mu\nu} + \delta g_{\mu\nu}$,

 $A_{\mu} \to A_{\mu} + \delta A_{\mu}$, etc.

• From these, we compute retarded Greens functions: the response of an operator to a small external source

$$G_{\mathcal{OO}}(\omega) \sim \left. \frac{\delta \langle \mathcal{O}(\omega) \rangle}{\delta \mathcal{J}(\omega)} \sim \left. \frac{\partial_r \phi(r,\omega)}{\phi(r,\omega)} \right|_{r \to \infty}$$

gravity calculation

- Using a Kubo formula, it is simple to determine electrical conductivity from δA_x

$$\sigma\left(\omega\right) = \frac{i}{\omega} G_{J^x J^x}\left(\omega\right) = \frac{\delta \langle J^x(\omega) \rangle}{\delta E_x(\omega)}$$

Basic properties of holographic theories

- These states are quite different from those composed of longlived quasiparticles. They are highly collective, and we deal directly with the collective currents of the system: $T^{\mu\nu}$, J^{μ} etc.
- The intrinsic relaxation times are short: \vec{J} wants to decay quickly but it can't. It carries momentum, which is conserved $\partial_{\mu}T^{\mu\nu} = 0 \longrightarrow \partial_{t}\vec{P} = 0$

• In general this is very hard. It is very instructive to work with simple cases where we can clearly identify what is happening.

A simple theory of massive gravity I

- The starting point: momentum conservation is enforced by the diffeomorphism invariance of gravity. The simplest way to remove this is to give a mass to the graviton e.g. $\mathcal{L}_m = \sqrt{-g}m^2 f_{\mu\nu}g^{\mu\nu}$ $f_{xx} = f_{yy} = 1$
- In fact, a more complicated action was studied first:

$$S = \int d^4x \sqrt{-g} \left(\mathcal{R} + \frac{6}{L^2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + m^2 \left[\left(\operatorname{Tr} \mathcal{K} \right)^2 - \operatorname{Tr} \left(\mathcal{K}^2 \right) \right] \right) \qquad \qquad \mathcal{K}^{\mu}_{\alpha} \mathcal{K}^{\alpha}_{\nu} = g^{\mu\alpha} f_{\alpha\nu}$$

• It has a simple solution with isotropy and translational invariance:

$$ds^{2} = \frac{L^{2}}{r^{2}} \left(-f(r)dt^{2} + dx^{2} + dy^{2} + \frac{dr^{2}}{f(r)} \right) \qquad A_{t}(r) = \mu \left(1 - \frac{r}{r_{0}} \right)$$

$$f(r) = 1 - m^{2}r^{2} - (1 - m^{2}r_{0}^{2} + \frac{1}{4}\mu^{2}r_{0}^{2})\frac{r^{3}}{r_{0}^{3}} + \frac{1}{4}\mu^{2}r_{0}^{2}\frac{r^{4}}{r_{0}^{4}} \qquad \text{Vegh}$$

- Vegh (2013)
- Numerical calculations show that σ_{DC} is finite.

A simple theory of massive gravity II

- This theory breaks diffeomorphism invariance in such a simple way that it is easy to learn a lot about what is happening.
- Near the horizon, the geometry is still $AdS_2 \times R^2$. It is a marginal deformation: the effect of m is to change the length scale of AdS_2
- The mass term has a much more important effect: the breaking of diffeomorphism invariance creates new dynamical degrees of freedom. One of these couples to δA_x .
- In the field theory, a new operator couples to J_x and its dimension controls the scaling behaviours of σ :

 $\sigma_{DC} \sim T^0 \qquad \qquad \sigma\left(\omega, T=0\right) \sim \omega^0$

Drude peak in massive gravity

• For small frequencies and graviton masses: $(m/\mu)^2 \ll \omega/\mu \ll 1$

$$\sigma(\omega) = \frac{\sigma_{\rm DC}}{1 - i\omega\tau} \qquad \sigma_{DC} \sim \tau \qquad \tau = \frac{4\pi \left(\epsilon + P\right)}{s} \frac{1}{m^2} \quad \text{RD (2013)}$$

- This is just a Drude peak! But Drude's theory is based on long-lived quasiparticles with lifetime au, and these are not present here.
- At long distances and low energies, we can deduce a simple effective theory of what is going on. The main effect of the graviton mass is to make the total momentum of the state dissipate at the rate $\partial_{\tau} \vec{P} \Gamma \vec{P} = \Gamma^{-1} \frac{s}{m^2} \frac{m^2}{m^2} \sim m^2 T^0$

$$\partial_t \vec{P} = -\Gamma \vec{P} \qquad \Gamma \equiv \tau^{-1} = \frac{s}{4\pi \left(\epsilon + P\right)} m^2 \sim m^2 T^0$$

• This momentum dissipation rate controls the conductivity.

What is going on in the field theory? I

- The coupling to new degrees of freedom due to the graviton mass produces the desired effect: it causes momentum to dissipate in the dual field theory and gives finite σ_{DC} .
- But what is really going on? Consider the simpler mass term $\mathcal{L}_m = \sqrt{-g}m^2 f_{\mu\nu}g^{\mu\nu}$. This has the same solution and equations for δA_x i.e. the same conductivity.
- Rewrite the fixed reference metric in terms of scalar fields ("Stuckelberg trick"): $m^2 f_{\mu\nu} = \delta_{ij} \partial_\mu \varphi^i \partial_\nu \varphi^j$
- This restores diffeomorphism invariance at the price of introducing new degrees of freedom (scalar fields).

What is going on in the field theory? II

• The resulting action is much more reasonable:

$$S = \int d^4x \sqrt{-g} \left[\mathcal{R} + \frac{6}{L^2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \sum_{i=1}^2 \partial_\mu \varphi^i \partial^\mu \varphi^i \right]$$

- The new massless scalar fields have equations of motion with simple solutions that explicitly break translational invariance $\partial_{\mu} \left(\sqrt{-g} g^{\mu\nu} \partial_{\nu} \varphi^i \right) = 0 \qquad \varphi^i = m x^i \qquad \text{xi: field theory spatial co-ordinates}$
- The equations for δA_x are the same as in the previous theory of massive gravity, and therefore so is the conductivity.
- There is an effective graviton mass from coupling to a scalar field with a source that breaks translational invariance. The new degrees of freedom are excitations of the scalar fields.

Generalise: what are the key features?

• There are two mathematical features that make things so simple:

1. Although the scalar fields explicitly break translational invariance, their derivatives are independent of x^i . Thus the gravitational $T^{\mu\nu}$ is independent of x^i , and so is the metric.

2. The equations of motion for δA_x are so simple that there is a universal expression for σ_{DC} that depends on the near-horizon gravitational solution. Blake, Tong (2013) i.e. one does not have to explicitly embed this near-horizon geometry into an AdS spacetime, or to solve the equations for δA_x explicitly.

Generalise: many metals & insulators

- We were working with the simplest action with a charged black hole solution: Einstein-Maxwell theory.
 scalar field present in string theory
- Can generalise this to an Einstein-Maxwell-dilaton theory (plus scalars to break translational symmetry), and classify the possible near-horizon solutions i.e. possible IR effective field theories.
- The equations for δA_x retain the simplicity, and so it is simple to read off σ_{DC} : $\sigma_{DC} \sim T^{\alpha}$, $\sigma(\omega, T = 0) \sim \omega^{\beta}$, $\alpha \neq \beta$ Gouteraux (2014), Donos, Gauntlett (2014)
- They can be conductors (coherent or incoherent) or "insulators". Power laws determined by the exponents characterising the scaling symmetries of the IR physics (e.g. z).

More realistic examples

- These states break translational invariance in a featureless way.
- The tools developed here are useful in more realistic examples: the main effect of translational symmetry breaking is to generate an effective mass for the graviton, which controls σ_{DC} .
- If the scalar has a periodic or spatially random source, the equations of motion for δA_x retain the simplicity of the toy model, at leading order in the strength of the source. Blake, Tong, Vegh (2013), Lucas, Sachdev, Schalm (2014)
- In these cases, it is easy to calculate σ_{DC} from the effective graviton mass, which now depends on the characteristics of the lattice or disorder that is turned on.

Hydrodynamics and resistivity=entropy

- The holographic theories provide quantum critical phases with power law resistivities ρ_{DC} . The power typically depends on the various exponents z, θ , etc. controlling the IR physics.
- In some cases, it is possible to identify a more physical reason for these results. In particular, some of these holographic theories have the intriguing result $\rho_{DC}(T) \sim s(T)$.
- We can identify a mechanism responsible for this, which is due to universal properties of holographic theories.
- The holographic theories are examples of cases where this mechanism exists, but it can exist independently of holography.

"Almost conserved" momentum I

- If we weakly break translational invariance, so that \vec{P} lives for a long time (it is "almost conserved"), it controls the decay rate of \vec{J} at late times, and the conductivity is proportional to Γ , the rate at which momentum dissipates.
- Suppose this dissipation is caused by a coupling to a periodic source for an irrelevant operator in the IR: $\delta H = V \int dx e^{ik_L x} \mathcal{O}(x)$ The dissipation rate will be small and we can work perturbatively.
- At leading order, Γ is determined by the number of low energy states at k_L in the translationally invariant theory: it is these that couple to the lattice once it's turned on.

"Almost conserved" momentum II

• Using the memory matrix formalism, this intuition is confirmed:

$$\Gamma = \frac{V^2 k_L^2}{\chi_{\vec{P}\vec{P}}} \lim_{\omega \to 0} \frac{\mathrm{Im}G_{\mathcal{O}\mathcal{O}}(\omega, k_L)}{\omega} \bigg|_{\mathbf{U}}$$

$$\Gamma = \frac{v}{\chi_{\vec{P}\vec{P}}} \int d^2k \ k^2 \lim_{\omega \to 0} \left. \frac{\operatorname{Im}G\mathcal{OO}(\omega, \kappa)}{\omega} \right|_{V \to 0}$$

- And in both cases, $\rho_{DC}(T) \sim \Gamma(T)$.
- Note that this argument exists independently of holography, but is particularly useful in these cases since momentum is the only long-lived quantity.
 Hartnoll, Kovtun, Muller, Sachdev (2007) Hartnoll, Herzog (2008)

Hartnoll, Hofman (2012)

Hydrodynamics in holography

- So, in some cases, the resistivity is controlled by the properties of the translationally invariant state.
- One of the most generic features of translationally invariant holographic theories is that they behave hydrodynamically at sufficiently low energies and long distances.
- These collective states are "almost perfect fluids": they reach local thermal equilibrium in the shortest possible time, due to their minimal viscosity $\eta = \frac{\hbar}{k_B} \frac{s}{4\pi}$ Kovtun, Son, Starinets (2004) Iqbal, Liu (2008)
- This is very different than in quasiparticle theories where η is very large due to the weak interactions e.g. in a Fermi liquid, $\eta\sim 1/T^2$

Weak disorder and hydrodynamics

- In a hydrodynamic state, the correlation functions of $T^{\mu\nu}, \ J^{\mu}$ at low energies and long distances are fixed.
- So if we couple a (relativistic, conformal) hydrodynamic state to random sources of energy density and charge density (i.e. random disorder)

$$\rho_{DC} \sim \frac{\mathcal{V}_{T^{tt}}^2}{\sigma^2} \int dkk \left(\eta k^2 + \ldots \right), \quad \rho_{DC} \sim \frac{\mathcal{V}_{J^t}^2}{\sigma^2} \int dkk \left(\frac{1}{\sigma_Q} \left[2 \frac{\sigma^2}{\epsilon + P} - \left(\frac{d\sigma}{d\mu} \right)_T \right]^2 + k^2 \frac{\sigma^2}{\left(\epsilon + P \right)^2} \eta + \ldots \right),$$

charge density
frovided the disorder is irrelevant.

• And so if hydrodynamics applies at small distances $\sim \mu^{-1}$, random disorder will produce a viscous contribution to the resistivity: $\rho_{DC}(T) \sim \eta(T)/l^2$. RD, Schalm, Zaanen (2013) see also: Andreev, Kivelson, Spivak (2011)

Resistivity=entropy and the cuprates

- A simplified way to think about it: in a hydrodynamic state, momentum diffuses at a rate $D \sim \eta$. If it interacts with impurities a distance l apart, its lifetime is $\tau^{-1} \sim D/l^2$ and so the momentum dissipation rate is $\Gamma \sim \tau^{-1} \sim \eta/l^2$
- Locally critical ($z \to \infty$) holographic theories are well-described by hydrodynamics with $\eta = s/4\pi$ and couple weakly to random sources of energy and charge density:

 $ho_{DC}\left(T
ight)\sim s(T)$ see also Anantua et. al. (2012)

- At finite z, disorder is relevant at low energies. Perturbation theory breaks down at low T, where $\rho_{DC}\left(T
ight)\sim T^{2/z}s(T)$

Lucas, Sachdev, Schalm (2014)

How realistic is this?

- In the strange metal phase of the cuprates, $\rho_{DC}(T) \sim s(T)$??? They are both linear in T at optimal doping, and appear to change in a similar way as doping is reduced.
- A possible resolution: strong interactions in the cuprates cause the electrons to quickly form a collective, hydrodynamic state with minimal viscosity, before momentum is dissipated. Weak interactions with disorder then give a linear resistivity. At T=0, resistivity vanishes as a perfect (non-dissipative) fluid forms.
- It would be very interesting to systematically measure $\rho_{DC}(T)/s(T)$ as a function of doping and to look for more experimental signatures of hydrodynamics in metals.

Summary

- To get sensible transport properties in holographic theories, we need to introduce a mechanism that dissipates momentum.
- This can be done in a simple way that keeps the calculations tractable. The resulting states can be metallic or insulating.
- The key effect of momentum dissipation is that it generates an effective mass term for the graviton, which controls the resistivity. This extends to more realistic cases: lattices and random disorder.
- Inspired by holography, identified a simple physical mechanism by which metals can acquire a linear resistivity.