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Overview: Some history

● Holography: some strongly coupled quantum field theories can 
be rewritten as classical theories of gravity in higher-dimensional 
spacetimes.

● Solutions of the gravitational theory correspond to equilibrium 
states of the field theory (e.g. black holes = thermal states) and 
excitations of these gravitational solutions encode the transport 
properties of the dual field theory.

● Try to learn general lessons, to help understand the transport 
properties of real, strongly interacting thermal states (e.g. the 
quark-gluon plasma).

Policastro, Son, Starinets, Herzog, etc.... 2001+



  

Overview: AdS/CMT

● There are many other real systems whose transport properties 
are not understood e.g. some strongly correlated electron 
systems. 

● Holographic toy models of these states are charged black holes: 
dual to field theory states with a non-zero charge density.

● These states exhibit emergent quantum criticality at low 
energies. They transform very simply under rescalings of space 
and time.

● Holography lets us study the physics of quantum critical states of 
matter, in a controlled and simple way.



  

Overview: Transport in AdS/CMT

● Conceptually, the simplest transport property is the electrical 
conductivity              . It is also relatively easy to measure. 

● But for the holographic theories just described
                                            

● This is because these theories have a conserved momentum: a 
small current cannot dissipate, because it carries momentum.

● To get a realistic answer, we have to incorporate a mechanism by 
which the charge can dissipate momentum. In this talk, I will 
describe simple ways to do this.



  

Outline of this talk

● Basic technology and properties of holographic theories 

● Explicit translational symmetry breaking and massive gravity

● A simple mechanism for resistivity=entropy

● Conclusions



  

Basic technology of holography I

● A gravitational theory will have an action 

● Each field in the gravitational theory encodes the dynamics of an 
operator in the dual field theory:

● Gauged symmetries in the gravitational theory correspond to 
global symmetries in the field theory:

Diffeomorphism invariance:     
U(1) gauge invariance:

Gravity field Field theory operator



  

Basic technology of holography II

Solve 
Einstein's 
equations

RG flow

IR physics

extra co-ordinate r = energy scale

Near-horizon geometry

gravity field theory



  

Emergent and local quantum criticality

● The specific  IR physics depends on the gravitational action. 
Generically, the near-horizon metric is covariant under a scaling 
symmetry  

● In the IR, there is emergent quantum criticality, which can violate 
hyperscaling.

● In holography, the simplest examples have               .  These 
exhibit local quantum criticality. The dual geometries are 
conformal to                 . 

● For               , the IR physics is approximately momentum-
independent, and low energy excitations exist at all momenta.

z: dynamical critical exponent   



  

Linear response from holography

● The linear response of these field theories to perturbations is 
controlled by the linear excitations around the gravitational 
solutions

● From these, we compute retarded Greens functions: the 
response of an operator to a small external source

● Using a Kubo formula, it is simple to determine electrical 
conductivity from

gravity calculation



  

Basic properties of holographic theories

● These states are quite different from those composed of long-
lived quasiparticles. They are highly collective, and we deal 
directly with the collective currents of the system:                   etc.

● The intrinsic relaxation times are short:     wants to decay quickly 
but it can't. It carries momentum, which is conserved

● To get realistic transport, we need to dissipate it e.g. by 
breaking translational invariance.

● In general this is very hard. It is very instructive to work with 
simple cases where we can clearly identify what is happening.



  

A simple theory of massive gravity I

● The starting point: momentum conservation is enforced by the 
diffeomorphism invariance of gravity. The simplest way to 
remove this is to give a mass to the graviton e.g. 

● In fact, a more complicated action was studied first:

● It has a simple solution with isotropy and translational invariance:

● Numerical calculations show that          is finite.
Vegh (2013)



  

A simple theory of massive gravity II

● This theory breaks diffeomorphism invariance in such a simple 
way that it is easy to learn a lot about what is happening.

● Near the horizon, the geometry is still                  . It is a marginal 
deformation: the effect of m is to change the length scale of 

● The mass term has a much more important effect: the breaking 
of diffeomorphism invariance creates new dynamical degrees of 
freedom. One of these couples to        .

● In the field theory, a new operator couples to       and its 
dimension controls the scaling behaviours of      :



  

Drude peak in massive gravity

● For small frequencies and graviton masses:

● This is just a Drude peak! But Drude's theory is based on long-lived 
quasiparticles with lifetime    , and these are not present here.

● At long distances and low energies, we can deduce a simple 
effective theory of what is going on. The main effect of the graviton 
mass is to make the total momentum of the state dissipate at the 
rate

● This momentum dissipation rate controls the conductivity. 

RD (2013)



  

What is going on in the field theory? I

● The coupling to new degrees of freedom due to the graviton 
mass produces the desired effect: it causes momentum to 
dissipate in the dual field theory and gives finite         . 

● But what is really going on? Consider the simpler mass term         
                              . This has the same solution and equations for   
       i.e. the same conductivity. 

● Rewrite the fixed reference metric in terms of scalar fields 
(“Stuckelberg trick”):

● This restores diffeomorphism invariance at the price of 
introducing new degrees of freedom (scalar fields).



  

What is going on in the field theory? II

● The resulting action is much more reasonable:

● The new massless scalar fields have equations of motion with 
simple solutions that explicitly break translational invariance

● The equations for         are the same as in the previous theory of 
massive gravity, and therefore so is the conductivity.

● There is an effective graviton mass from coupling to a scalar field 
with a source that breaks translational invariance. The new 
degrees of freedom are excitations of the scalar fields.

Andrade, Withers (2013)

xi: field theory spatial co-ordinates



  

Generalise: what are the key features?

● There are two mathematical features that make things so simple:

1. Although the scalar fields explicitly break translational 
invariance, their derivatives are independent of     . Thus the 
gravitational         is independent of    , and so is the metric.

2. The equations of motion for        are so simple that there is a 
universal expression for          that depends on the near-horizon 
gravitational solution. 
i.e. one does not have to explicitly embed this near-horizon 
geometry into an AdS spacetime, or to solve the equations for     
explicitly.

Blake, Tong (2013)



  

Generalise: many metals & insulators

● We were working with the simplest action with a charged black 
hole solution: Einstein-Maxwell theory.

● Can generalise this to an Einstein-Maxwell-dilaton theory (plus 
scalars to break translational symmetry), and classify the possible 
near-horizon solutions i.e. possible IR effective field theories.

● The equations for        retain the simplicity, and so it is simple to 
read off         :

● They can be conductors (coherent or incoherent) or “insulators”. 
Power laws determined by the exponents characterising the 
scaling symmetries of the IR physics (e.g. z).

 Gouteraux (2014), Donos, Gauntlett (2014)

scalar field present in string theory



  

More realistic examples

● These states break translational invariance in a featureless way.

● The tools developed here are useful in more realistic examples: 
the main effect of translational symmetry breaking is to generate 
an effective mass for the graviton, which controls          .

● If the scalar has a periodic or spatially random source, the 
equations of motion for         retain the simplicity of the toy 
model, at leading order in the strength of the source. 

● In these cases, it is easy to calculate           from the effective 
graviton mass, which now depends on the characteristics of the 
lattice or disorder that is turned on.

Blake, Tong, Vegh (2013), Lucas, Sachdev, Schalm (2014)



  

Hydrodynamics and resistivity=entropy

● The holographic theories provide quantum critical phases with 
power law resistivities        . The power typically depends on the 
various exponents                   controlling the IR physics.

● In some cases, it is possible to identify a more physical reason 
for these results. In particular, some of these holographic 
theories have the intriguing result                             .

● We can identify a mechanism responsible for this, which is due 
to universal properties of holographic theories.

● The holographic theories are examples of cases where this 
mechanism exists, but it can exist independently of holography.



  

“Almost conserved” momentum I

● If we weakly break translational invariance, so that      lives for a 
long time (it is “almost conserved”), it controls the decay rate of  
    at late times, and the conductivity is proportional to    , the 
rate at which momentum dissipates.

● Suppose this dissipation is caused by a coupling to a periodic 
source for an irrelevant operator in the IR:
The dissipation rate will be small and we can work perturbatively. 
 

● At leading order,     is determined by the number of low energy 
states at       in the translationally invariant theory: it is these that 
couple to the lattice once it's turned on.



  

“Almost conserved” momentum II

● Using the memory matrix formalism, this intuition is confirmed: 

● For coupling to a spatially random source, one should integrate 
over momenta

● And in both cases,                             .

● Note that this argument exists independently of holography, but 
is particularly useful in these cases since momentum is the only 
long-lived quantity. Hartnoll, Kovtun, Muller, Sachdev (2007)

Hartnoll, Herzog (2008)
Hartnoll, Hofman (2012)



  

Hydrodynamics in holography

● So, in some cases, the resistivity is controlled by the properties of 
the translationally invariant state. 

● One of the most generic features of translationally invariant 
holographic theories is that they behave hydrodynamically at 
sufficiently low energies and long distances. 

● These collective states are “almost perfect fluids”: they reach 
local thermal equilibrium in the shortest possible time, due to 
their minimal viscosity              

● This is very different than in quasiparticle theories where     is very 
large due to the weak interactions e.g. in a Fermi liquid,

Kovtun, Son, Starinets (2004)
Iqbal, Liu (2008)



  

Weak disorder and hydrodynamics

● In a hydrodynamic state, the correlation functions of
at low energies and long distances are fixed.  

● So if we couple a (relativistic, conformal) hydrodynamic state to 
random sources of energy density and charge density (i.e. 
random disorder)

provided the disorder is irrelevant.

● And so if hydrodynamics applies at small distances           , 
random disorder will produce a viscous contribution to the 
resistivity:                                . RD, Schalm, Zaanen (2013)

see also: Andreev, Kivelson, Spivak (2011)

charge density “universal conductivity”



  

Resistivity=entropy and the cuprates

● A simplified way to think about it: in a hydrodynamic state, 
momentum diffuses at a rate            . If it interacts with impurities a 
distance    apart, its lifetime is                      and so the momentum 
dissipation rate is 

● Locally critical (             ) holographic theories are well-described 
by hydrodynamics with                 and couple weakly to random 
sources of energy and charge density: 

● At finite z, disorder is relevant at low energies. Perturbation theory 
breaks down at low T, where 

Lucas, Sachdev, Schalm (2014)

see also Anantua et. al. (2012)



  

How realistic is this?

● In the strange metal phase of the cuprates,  
They are both linear in T at optimal doping, and appear to 
change in a similar way as doping is reduced.

● A possible resolution: strong interactions in the cuprates cause 
the electrons to quickly form a collective, hydrodynamic state 
with minimal viscosity, before momentum is dissipated. Weak 
interactions with disorder then give a linear resistivity. At T=0, 
resistivity vanishes as a perfect (non-dissipative) fluid forms.

● It would be very interesting to systematically measure                
as a function of doping and to look for more experimental 
signatures of hydrodynamics in metals.



  

Summary

● To get sensible transport properties in holographic theories, we 
need to introduce a mechanism that dissipates momentum. 

● This can be done in a simple way that keeps the calculations 
tractable. The resulting states can be metallic or insulating.

● The key effect of momentum dissipation is that it generates an 
effective mass term for the graviton, which controls the resistivity. 
This extends to more realistic cases: lattices and random disorder. 

● Inspired by holography, identified a simple physical mechanism by 
which metals can acquire a linear resistivity.
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