New Skins for an Old Ceremony
The Conformal Bootstrap and the Ising Model

Sheer El-Showk
École Polytechnique & CEA Saclay

Based on:

arXiv:1211.2810 with M. Paulos

May 16, 2013
Crete Center for Theoretical Physics
New Skins for an Old Ceremony
The Conformal Bootstrap and the Ising Model

Sheer El-Showk
École Polytechnique & CEA Saclay

Based on:

arXiv:1211.2810 with M. Paulos

May 16, 2013

Crete Center for Theoretical Physics
Motivation & Approach

Why return to the bootstrap?

1. Conformal symmetry very powerful tool that goes largely unused in $D > 2$.
2. Completely non-perturbative tool to study field theories
 - Does not require SUSY, large N, or weak coupling.
3. In $D = 2$ conformal symmetry enhanced to Virasoro symmetry
 - Allows us to completely solve some CFTs ($c < 1$).
4. Long term hope: generalize this to $D > 2$?

Approach

- Use only “global” conformal group, valid in all D.
- Our previous result:
 - Constrained “landscape of CFTs” in $D = 2, 3$ using conformal bootstrap.
 - Certain CFTs (e.g. Ising model) sit at boundary of solution space.
- New result: “solve” spectrum & OPE of CFTs (in any D) on boundary.
 - Check against the $D = 2$ Ising model.
- The Future: Apply this to $D = 3$ Ising model?
Motivation & Approach

Why return to the bootstrap?

1. Conformal symmetry very powerful tool that goes largely unused in $D > 2$.
2. Completely non-perturbative tool to study field theories
 ▶ Does not require SUSY, large N, or weak coupling.
3. In $D = 2$ conformal symmetry enhanced to Virasoro symmetry
 ▶ Allows us to completely solve some CFTs ($c < 1$).
4. Long term hope: generalize this to $D > 2$?

Approach

▶ Use only “global” conformal group, valid in all D.
▶ Our previous result:
 ▶ Constrained “landscape of CFTs” in $D = 2, 3$ using conformal bootstrap.
 ▶ Certain CFTs (e.g. Ising model) sit at boundary of solution space.
▶ New result: “solve” spectrum & OPE of CFTs (in any D) on boundary.
 ▶ Check against the $D = 2$ Ising model.
▶ The Future: Apply this to $D = 3$ Ising model?
Motivation & Approach

Why return to the bootstrap?

1. Conformal symmetry very powerful tool that *goes largely unused* in $D > 2$.
2. Completely non-perturbative tool to study field theories
 - Does not require SUSY, large N, or weak coupling.
3. In $D = 2$ conformal symmetry enhanced to *Virasoro* symmetry
 - Allows us to *completely solve* some CFTs ($c < 1$).
4. Long term hope: generalize this to $D > 2$?

Approach

- Use only “global” conformal group, valid in all D.
- Our previous result:
 - Constrained “landscape of CFTs” in $D = 2, 3$ using conformal bootstrap.
 - Certain CFTs (e.g. Ising model) sit at *boundary* of solution space.
- New result: “solve” spectrum & OPE of CFTs (in any D) on boundary.
 - Check against the $D = 2$ Ising model.
- The Future: Apply this to $D = 3$ Ising model?
Motivation & Approach

Why return to the bootstrap?

1. Conformal symmetry very powerful tool that *goes largely unused* in $D > 2$.
2. Completely non-perturbative tool to study field theories
 - Does not require SUSY, large N, or weak coupling.
3. In $D = 2$ conformal symmetry enhanced to Virasoro symmetry
 - Allows us to *completely solve* some CFTs ($c < 1$).
4. Long term hope: generalize this to $D > 2$?

Approach

- Use only “global” conformal group, valid in all D.
- Our previous result:
 - Constrained “landscape of CFTs” in $D = 2, 3$ using conformal bootstrap.
 - Certain CFTs (e.g. Ising model) sit at *boundary* of solution space.
- New result: “solve” spectrum & OPE of CFTs (in any D) on boundary.
 - Check against the $D = 2$ Ising model.
- The Future: Apply this to $D = 3$ Ising model?
Motivation

The Ising Model

CFT Refresher

The Bootstrap & the Extremal Functional Method

Results: the 2d Ising model

The (Near) Future

Conclusions/Comments
The Ising model
The Ising Model
Original Formulation

Basic Definition
- Lattice theory with nearest neighbor interactions

\[H = -J \sum_{\langle i,j \rangle} s_is_j \]

with \(s_i = \pm 1 \) (this is \(O(N) \) model with \(N = 1 \)).

Relevance
- Historical: 2d Ising model solved exactly. [Onsager, 1944].
- Relation to \(\epsilon \)-expansion.
- “Simplest” CFT (universality class)
- Describes:
 1. Ferromagnetism
 2. Liquid-vapour transition
 3. …
The Ising Model
A Field Theorist’s Perspective

Continuum Limit

- To study fixed point can take continuum limit (and \(\sigma(x) \in \mathbb{R} \))

\[
H = \int d^D x \left[(\nabla \sigma(x))^2 + t \sigma(x)^2 + a \sigma(x)^4 \right]
\]

- In \(D < 4 \) coefficient \(a \) is relevant and theory flows to a fixed point.

\(\mathcal{E} \)-expansion

Wilson-Fisher set \(D = 4 - \mathcal{E} \) and study critical point perturbatively.
Setting \(\mathcal{E} = 1 \) can compute anomolous dimensions in \(D = 3 \):

\[
[\sigma] = 0.5 \to 0.518 \ldots
\]

\[
[\epsilon] := [\sigma^2] = 1 \to 1.41 \ldots
\]

\[
[\epsilon'] := [\sigma^4] = 2 \to 3.8 \ldots
\]
At fixed point **conformal symmetry** emerges:

- Strongly constrains data of theory.
- Can we use symmetry to fix e.g. \([\sigma], [\epsilon], [\epsilon'], \ldots\) ?
- Can we also fix interactions this way?
CFT Refresher
Conformal Symmetry in $D > 2$

Primary Operators

Conformal symmetry:

$$SO(1, D - 1) \times \mathbb{R}^{1,D-1} + D \text{ (Dilatations)} + K_\mu \text{ (Special conformal)}$$

Highest weight representation built on primary operators \mathcal{O}:

- **Primary operators**: $K_\mu \mathcal{O}(0) = 0$
- **Descendents**: $P_{\mu_1} \ldots P_{\mu_n} \mathcal{O}(0)$

All dynamics of *descendants* fixed by those of primaries.

Clarifications vs 2D

- Primaries \mathcal{O} called *quasi-primaries* in $D = 2$.
- Descendents are with respect to “small” conformal group: $L_0, L_{\pm 1}$.
- Example: Viraso descendents $L_{-2} \mathcal{O}$ are *primaries* in our language.
Spectrum and OPE

CFT Background

CFT defined by specifying:

- **Spectrum** $\mathcal{S} = \{\mathcal{O}_i\}$ of primary operators dimensions, spins: (Δ_i, l_i)
- **Operator Product Expansion (OPE)**

$$\mathcal{O}_i(x) \cdot \mathcal{O}_j(0) \sim \sum_k C^k_{ij} D(x, \partial_x) \mathcal{O}_k(0)$$

\mathcal{O}_i are primaries. Diff operator $D(x, \partial_x)$ encodes *descendant* contributions.

This data fixes all correlations in the CFT:

- **2-pt & 3-pt fixed:**

$$\langle \mathcal{O}_i \mathcal{O}_j \rangle = \frac{\delta_{ij}}{x^{2\Delta_i}}, \quad \langle \mathcal{O}_i \mathcal{O}_j \mathcal{O}_k \rangle \sim C_{ijk}$$

- **Higher pt functions contain no new dynamical info:**

$$\langle \underbrace{\mathcal{O}_1(x_1) \mathcal{O}_2(x_2)}_{\sum_k C^k_{12} D(x_{12}, \partial_{x_2}) \mathcal{O}_x(x_2)} \underbrace{\mathcal{O}_3(x_3) \mathcal{O}_4(x_4)}_{\sum_l C^l_{34} D(x_{34}, \partial_{x_4}) \mathcal{O}_x(x_3) \mathcal{O}_l(x_4)} \rangle$$

$$= \sum_{k,l} C^k_{12} C^l_{34} D(x_{12}, x_{34}, \partial_{x_2}, \partial_{x_4}) \langle \mathcal{O}_k(x_2) \mathcal{O}_l(x_4) \rangle$$
Spectrum and OPE

CFT Background

CFT defined by specifying:

- **Spectrum** \(S = \{ \mathcal{O}_i \} \) of primary operators dimensions, spins: \((\Delta_i, l_i)\)
- **Operator Product Expansion (OPE)**

\[
\mathcal{O}_i(x) \cdot \mathcal{O}_j(0) \sim \sum_k C_{ij}^k D(x, \partial_x) \mathcal{O}_k(0)
\]

\(\mathcal{O}_i\) are primaries. Diff operator \(D(x, \partial_x)\) encodes descendental contributions.

This data fixes all correlators in the CFT:

- **2-pt & 3-pt fixed:**

\[
\langle \mathcal{O}_i \mathcal{O}_j \rangle = \frac{\delta_{ij}}{x^{2\Delta_i}}, \quad \langle \mathcal{O}_i \mathcal{O}_j \mathcal{O}_k \rangle \sim C_{ijk}
\]

- **Higher pt functions** contain no new dynamical info:

\[
\langle \mathcal{O}_1(x_1) \mathcal{O}_2(x_2) \mathcal{O}_3(x_3) \mathcal{O}_4(x_4) \rangle = \sum_k C_{12}^k C_{34}^k G_{\Delta_k, l_k}(u, v)
\]

conformal block
Crossing Symmetry

CFT Background

This procedure is not unique: \[
\langle \phi_1 \phi_2 \phi_3 \phi_4 \rangle
\]

\[
\sum_k C_{12}^k C_{34}^k G^{12;34}_{\Delta_k,l_k}(u,v) = \sum_k C_{14}^k C_{23}^k G^{14;23}_{\Delta_k,l_k}(u,v)
\]

Consistency requires equivalence of two different contractions

Functions \(G^{ab;cd}_{\Delta_k,l_k} \) are conformal blocks (of “small” conformal group):

- Each \(G_{\Delta_k,l_k} \) corresponds to one operator \(\mathcal{O}_k \) in OPE.
- Entirely kinematical: all dynamical information is in \(C_{ij}^k \).
- \(u, v \) are independent conformal cross-ratios: \(u = \frac{x_{12}x_{34}}{x_{13}x_{24}}, v = \frac{x_{14}x_{23}}{x_{13}x_{24}} \)
- Crossing symmetry give non-perturbative constraints on \((\Delta_k, C_{ij}^k) \).
CFT Background Recap

What have we learned so far:

1. CFTs completely specified by primary operator spectrum and OPE.
 \[\{\Delta_i, l_i\}, \{C_{ijk}\} \text{ for all } \mathcal{O}_i \]
 This data allows us to compute all correlators.

2. Constrained by crossing symmetry

 \[\sum_k C_{14}^k C_{23}^k \mathcal{G}^{14;23}_{\Delta_k,l_k}(u,v) = \sum_k C_{12}^k C_{34}^k \mathcal{G}^{12;34}_{\Delta_k,l_k}(u,v) \]

3. Crossing symmetry equations is sum over primary operators \(\mathcal{O}_k \):
 \[\sum_{\mathcal{O}_k} C_{12}^k C_{34}^k \mathcal{G}^{12;34}_{\Delta_k,l_k}(u,v) = \sum_{\mathcal{O}_k} C_{14}^k C_{23}^k \mathcal{G}^{14;23}_{\Delta_k,l_k}(u,v) \]

4. \(\mathcal{G}_{\Delta_k,l_k}(u,v) \) encode contribution of primary \(\mathcal{O}_k \) and its descendents.
How Strong is Crossing Symmetry?
The “Landscape” of CFTs
Constraints from Crossing Symmetry

Constraining the spectrum

Figure: A Putative Spectrum in \(D = 3 \)

- Unitarity implies:
 \[
 \Delta \geq \frac{D - 2}{2} \quad (l = 0), \\
 \Delta \geq l + D - 2 \quad (l \geq 0)
 \]

- “Carve” landscape of CFTs by imposing gap in scalar sector.

- Fix lightest scalar: \(\sigma \).

- Vary next scalar: \(\epsilon \).

- Spectrum otherwise unconstrained: allow any other operators.
Constraining Spectrum using Crossing Symmetry

Is crossing symmetry consistent with a gap?

σ four-point function: \[\langle \sigma_1 \sigma_2 \sigma_3 \sigma_4 \rangle \]

Crossing symmetric values of σ-ε

▶ Certain values of σ, ε inconsistent with crossing symmetry.

▶ Solutions to crossing:
 1. white region ⇒ 0 solutions.
 2. blue region ⇒ \(\infty \) solutions.
 3. boundary ⇒ 1 solution (unique)!

▶ Ising model special in two ways:
 1. On boundary of allowed region.
 2. At kink in boundary curve.

Blue = solution may exists.
White = No solution exists.
Solving CFTs on the boundary via Crossing

Summarize Our Approach

Use the uniqueness of the boundary solution to compute OPE & spectrum of a putative CFTs at any point on the boundary.

\[
\begin{align*}
\Delta_\epsilon & \quad 0.50 \\
& \quad 0.55 \\
& \quad 0.60 \\
& \quad 0.65 \\
& \quad 0.70 \\
& \quad 0.75 \\
& \quad 0.80 \\
\Delta_\sigma & \quad 1.0 \\
& \quad 1.2 \\
& \quad 1.4 \\
& \quad 1.6 \\
& \quad 1.8 \\
\end{align*}
\]
Implementing Crossing Symmetry
So how do we enforce crossing symmetry \textit{in practice}?

Consider four \textit{identical} scalars: \[\langle \phi(x_1) \phi(x_2) \phi(x_3) \phi(x_4) \rangle \quad \text{dim}(\phi) = \Delta \phi \]

Recall crossing symmetry constraint:

\[
\sum_{\mathcal{O}_k} (C_{\phi\phi}^k)^2 G^{12;34}_{\Delta_k,l_k}(x) = \sum_{\mathcal{O}_k} (C_{\phi\phi}^k)^2 G^{14;23}_{\Delta_k,l_k}(x)
\]
So how do we enforce crossing symmetry in practice?

Consider four identical scalars:

\[
\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle \quad \text{dim}(\phi) = \Delta_\phi
\]

Move everything to LHS:

\[
\sum_{\mathcal{O}_k} (C^k_{\phi\phi})^2 G_{\Delta_k,l_k}^{12;34}(x) - \sum_{\mathcal{O}_k} (C^k_{\phi\phi})^2 G_{\Delta_k,l_k}^{14;23}(x) = 0
\]
So how do we enforce crossing symmetry in practice?

Consider four identical scalars: \[\langle \phi(x_1) \phi(x_2) \phi(x_3) \phi(x_4) \rangle \quad \text{dim}(\phi) = \Delta \phi \]

Express as sum of functions with positive coefficients:

\[
\sum_{c_{k \phi \phi}} \left(C^k_{\phi \phi} \right)^2 \left[G^{12;34}_{\Delta k, l_k}(x) - G^{14;23}_{\Delta k, l_l}(x) \right] = 0
\]

\[
\sum_k \begin{array}{c}
\begin{array}{c}
1 \\
2
\end{array}
\end{array}
\]

\[
\sum_k \begin{array}{c}
\begin{array}{c}
1 \\
4
\end{array}
\end{array}
\]

\[
\sum_k \begin{array}{c}
\begin{array}{c}
2 \\
3
\end{array}
\end{array}
\]

\[
\sum_k \begin{array}{c}
\begin{array}{c}
1 \\
3
\end{array}
\end{array}
\]

\[
\sum_k \begin{array}{c}
\begin{array}{c}
2 \\
4
\end{array}
\end{array}
\]
Crossing Symmetry Nuts and Bolts

Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars:

\[\langle \phi(x_1) \phi(x_2) \phi(x_3) \phi(x_4) \rangle \quad \text{dim}(\phi) = \Delta \phi \]

\[\sum_{O_k} (C_{\phi \phi}^k)^2 \left[G_{12;34}^{12;34}(x) - G_{14;23}^{14;23}(x) \right] = 0 \]

Functions \(F_k(x) \) are formally infinite dimensional vectors.

\[p_1 (F_1, F_1', F_1'', \ldots) + p_2 (F_2, F_2', F_2'', \ldots) + p_3 (F_3, F_3', F_3'', \ldots) + \cdots = \vec{0} \]

1. Each vector \(\vec{v}_k \) represents the contribution of an operator \(O_k \).
2. If \(\{\vec{v}_1, \vec{v}_2, \ldots\} \) span a positive cone there is no solution.
3. Efficient numerical methods to check if vectors \(\vec{v}_k \) span a cone.
4. When cone “unfolds” solution is unique!
Crossing Symmetry Nuts and Bolts

Bootstrap

So how do we enforce crossing symmetry in practice?

Consider four identical scalars:

\[
\langle \phi(x_1) \phi(x_2) \phi(x_3) \phi(x_4) \rangle \quad \text{dim}(\phi) = \Delta \phi
\]

\[
\sum_{\mathcal{O}_k} (C_{\phi \phi}^k)^2 \left[G^{12;34}_{\Delta_k,l_k}(x) - G^{14;23}_{\Delta_k,l_l}(x) \right] = 0
\]

Functions \(F_k(x) \) are formally infinite dimensional vectors.

\[
p_1 (\vec{v}_1, F_1, F_1', F_1'', \ldots) + p_2 (\vec{v}_2, F_2, F_2', F_2'', \ldots) + p_3 (\vec{v}_3, F_3, F_3', F_3'', \ldots) + \cdots = \vec{0}
\]

1. Each vector \(\vec{v}_k \) represents the contribution of an operator \(\mathcal{O}_k \).
2. If \(\{\vec{v}_1, \vec{v}_2, \ldots\} \) span a positive cone there is no solution.
3. Efficient numerical methods to check if vectors \(\vec{v}_k \) span a cone.
4. When cone “unfolds” solution is unique!
Cones in Derivative Space

Vectors form cone ⇒ no solution.

No Solutions to Crossing

Axes are derivatives:

\[F'_{\Delta,l}(x), F''_{\Delta,l}(x), F'''_{\Delta,l}(x) \]

Vectors represents operators

All operators lie inside half-space.

\(\vec{0} \) not in positive cone.
Cones in Derivative Space

Cone “unfolds” giving unique solution.

Unique Solution to Crossing

Axes are derivatives:

\[F'_{\Delta,l}(x), F''_{\Delta,l}(x), F'''_{\Delta,l}(x) \]

Vectors represents operators

Boundary of cone (red) spans a plane.

\(\vec{0} \) in span of red vectors.
Cones in Derivative Space

As more operators added solutions no longer unique.

Many Solutions to Crossing

1. Axes are derivatives:

 \[F'_{\triangle,l}(x), F''_{\triangle,l}(x), F'''_{\triangle,l}(x) \]

2. Vectors represent operators

3. Vectors span full space.

4. Many ways to form \(\vec{0} \).
Spectrum and OPE from crossing?

Checking the extremal functional method
How Powerful is Crossing Symmetry?

To check our technique let's apply to 2d Ising model.

- Same plot in 2d.
- Completely solvable theory.
 - Using Virasoro symmetry can compute full spectrum & OPE.

Can we reproduce using crossing symmetry & only "global" conformal group?
Crossing Symmetry vs. Exact Results

Exact (Virasoro) results compared to unique solution at “kink” on boundary:

<table>
<thead>
<tr>
<th>Spin 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Mileage from Crossing Symmetry?
- ▶ 12 OPE coefficients to < 1% error.
- ▶ Spectrum better:
 1. In 2d Ising expect operators at \(L, L + 1, L + 4 \).
 2. We find this structure up to \(L = 20 \)
 \(\sim 38 \) operator dimensions < 1% error!
What about 3d Ising Model?
Current “State-of-the-Art”

3d Ising model

Using \mathcal{E}-expansion, Monte Carlo and other techniques find partial spectrum:

<table>
<thead>
<tr>
<th>Field:</th>
<th>σ</th>
<th>ϵ</th>
<th>ϵ'</th>
<th>$T_{\mu\nu}$</th>
<th>$C_{\mu\nu\rho\lambda}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim (Δ):</td>
<td>0.5182(3)</td>
<td>1.413(1)</td>
<td>3.84(4)</td>
<td>3</td>
<td>5.0208(12)</td>
</tr>
<tr>
<td>Spin (l):</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Only 5 operators and no OPE coefficients known for 3d Ising!

Lots of room for improvement!

Our Goal

Compute these anomolous dimensions (and many more) and OPE coefficients using the bootstrap applied along the boundary curve.
Spectrum of the 3d Ising Model
Computing 3d Spectrum from Boundary Functional?

A first problem: what point on the boundary? what is correct value of σ?

1. In $D = 2$ we know σ by other means.
2. “Kink” is not so sharp when we zoom in.
3. Gets sharper as we increase number of constraints
 \Rightarrow should taylor expand to higher order!
Origin of the Kink
Re-arrangement of spectrum?

Spectrum near the kink undergoes rapid re-arrangement.

Plots for next Scalar and Spin 2 Field

1. “Kink” in \((\epsilon, \sigma)\) plot due to rapid rearrangement of *higher dim spectrum*.
2. Important to determine \(\sigma\) to high precision.
3. Does this hint at some analytic structure we can use?
The Future
What’s left to do?

Honing in on the Ising model?

- Fix dimension of σ in 3d Ising using “kink” or other features.
- Use boundary functional to compute spectrum, OPE for 3d Ising.
- Compare with lattice or experiment!
- Additional constraints: add another correlator $\langle \sigma \sigma \epsilon \epsilon \rangle$.
- Study spectrum, OPE as a function of spacetime dimension.

Exploring the technology

- How specific is this structure to Ising model?
- Can we impose more constraints and find new “kinks” for other CFTs?
- Can any CFT be “solved” by imposing a few constraints (gaps) and then solving crossing symmetry?
- What about SCFTs? Need to know structure of supersymmetric conformal blocks.
The Future
What’s left to do?

More Questions/Thoughts

- Technology still begin refined ⇒ lots to do!
- Why is Ising model on boundary? Why at a “kink”?
- Do these features have physical meanings or artifacts of method?
- Only just begun to take advantage of conformal symmetry in \(D > 2\).

AdS/CFT Applications

- Generalized Free Field CFTs are dual to free \((N \sim \infty)\) fields in AdS
 [Heemskerk et al, SE and Papadodimas]
- Higher spin GFFs are “multi-particle states” in bulk:

\[
\mathcal{O} \sim \phi \partial_{\{\mu_1 \ldots \partial \mu_n\}} \phi
\]

with \(\Delta_{\mathcal{O}} = n + 2\Delta_\phi\) and \(\Delta_\phi > \frac{D-2}{2}\).
- Tentative result: Bound on gap for any spins is saturated by GFFs.
- If true then: leading \(1/N^2\) always negative!
The Future
What’s left to do?

More Questions/Thoughts
- Technology still begin refined ⇒ lots to do!
- Why is Ising model on boundary? Why at a “kink”?
- Do these features have physical meanings or artifacts of method?
- Only just begun to take advantage of conformal symmetry in $D > 2$.

AdS/CFT Applications
- Generalized Free Field CFTs are dual to free ($N \sim \infty$) fields in AdS
 [Heemskerk et al, SE and Papadodimas]
- Higher spin GFFs are “multi-particle states” in bulk:
 \[\mathcal{O} \sim \phi \partial_{\{\mu_1 \ldots \partial_{\mu_n}\}} \phi \]
 with $\Delta_{\mathcal{O}} = n + 2\Delta_\phi$ and $\Delta_\phi > \frac{D-2}{2}$.
- **Tentative result:** Bound on gap for any spins is *saturated* by GFFs.
- If true then: leading $1/N^2$ always negative!
Thanks