Mott collapse and statistical quantum criticality

Jan Zaanen

J. Zaanen and B.J. Overbosch, arXiv: 0911.4070 (Phil.Trans.Roy.Soc. A, in press)

doping, density -----

Who to blame ...

Plan

1. The idea of Mott collapse

2. Mottness versus "Weng statistics"

3. Statistics and t-J numerics

4. Fermions, scale invariance and Ceperley's path integral

Quantum Phase transitions

Quantum scale invariance emerges naturally at a zero temperature continuous phase transition driven by quantum fluctuations:

JZ, Science 319, 1205 (2008)

Fermionic quantum phase transitions in the heavy fermion metals

Phase diagram high Tc superconductors

The quantum in the kitchen: Landau's miracle

Electrons are waves

Pauli exclusion principle: every state occupied by one electron

Unreasonable: electrons strongly interact !!

Landau's Fermi-liquid: the highly collective low energy quantum excitations are like electrons that do not interact.

BCS theory: fermions turning into bosons

Bardeen Cooper Schrieffer

Quasiparticles pair and Bose condense:

Ground state

$$\Psi_{BCS} = \Pi_k \left(u_k + v_k c_{k\uparrow}^+ c_{-k\downarrow}^+ \right) \left| vac. \right\rangle$$

D-wave SC: Dirac spectrum

Fermions and Hertz-Millis-Moriya-Lonzarich

Bosonic (magnetic, etc.) order parameter drives the phase transition

Electrons: fermion gas = heat bath damping bosonic critical fluctuations

Bosonic critical fluctuations 'back react' as pairing glue on the electrons

Fermion sign problem

Imaginary time path-integral formulation

$$\begin{aligned} \mathcal{Z} &= \operatorname{Tr} \exp(-\beta \hat{\mathcal{H}}) \\ &= \int \mathrm{d} \mathbf{R} \rho(\mathbf{R}, \mathbf{R}; \beta) \\ \mathbf{R} &= (\mathbf{r}_1, \dots, \mathbf{r}_N) \in \mathbb{R}^{Nd} \end{aligned}$$

1 ----

$$\rho_{B/F}(\mathbf{R}, \mathbf{R}; \beta) = \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \rho_D(\mathbf{R}, \mathcal{P}\mathbf{R}; \beta)$$

$$= \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \int_{\mathbf{R} \to \mathcal{P}\mathbf{R}} \mathcal{D}\mathbf{R}(\tau) \exp\left\{-\frac{1}{\hbar} \int_0^{\hbar/T} \mathrm{d}\tau \left(\frac{m}{2} \dot{\mathbf{R}}^2(\tau) + V(\mathbf{R}(\tau))\right)\right\}$$

Boltzmannons or Bosons:

- integrand non-negative
- probability of equivalent classical system: (crosslinked) ringpolymers

Fermions:

- negative Boltzmann weights
- non probablistic: NP-hard problem (Troyer, Wiese)!!!

Mottness and quantum statistics

Cuprates start as doped Mottinsulators

Μ

13

Mottness and Hilbert space dimensionality

Mott-maps and highway ramps

Phil Anderson

Probing rush hour in the electron world

Mott-maps and highway ramps

Phil Anderson

Mott collapse: Hubbard model

N = 0.85 where $Z_0(\mathbf{k})$ fits a MFL form. This is consistent with the observation of rough particle-hole symmetry in the cuprates in the proximity of optimal doping 6

Mott collapse: Hubbard model

FIG. 4: The pseudogap temperature T^* , identified from the peak in the susceptibility and the emergence of the PG in the DOS shown in Fig. 3 and the FL to MFL crossover temperature identified by fitting Eq. 9 to the Matsubara quasiparticle data shown in Fig. 1

Jarrell

Catherine's 'selective Mott transition'

Plan

1. The idea of Mott collapse

2. Mottness versus "Weng statistics"

3. Statistics and t-J numerics

4. Fermions, scale invariance and Ceperley's path integral

Cuprates start as doped Mottinsulators

Μ

23

Quantum statistics and path integrals

$$\rho_{B/F}(\mathbf{R}, \mathbf{R}; \beta) = \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \rho_D(\mathbf{R}, \mathcal{P}\mathbf{R}; \beta)$$
$$= \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \int_{\mathbf{R} \to \mathcal{P}\mathbf{R}} \mathcal{D}\mathbf{R}(\tau) \exp\left\{-\frac{1}{\hbar} \int_0^{\hbar/T} \mathrm{d}\tau \left(\frac{m}{2} \dot{\mathbf{R}}^2(\tau) + V(\mathbf{R}(\tau))\right)\right\}$$

Bose condensation: Partition sum dominated by infinitely long cycles

Cycle decomposition

Fermions: infinite cycles set in at T_F , but cycles with length w and w+1 cancel each other approximately. Free energy pushed to E_F !

Mott insulator: the vanishing of Fermi-Dirac statistics

Mott-insulator: the electrons become distinguishable, stay at home principle!

Spins live in tensor-product space. "Spin signs" are like hard core bosons in a magnetic field, can be gauged away on a bipartite lattice ("Marshall signs")

Doped Mott-insulator: Weng statistics

t-J model: spin up is background, spin down's ('spinons') and holes ('holons') are hard core bosons.

The **sign** of any term is set by:

Exact Partition sum:
$$Z_{t-J} = \sum_{c} \tau_{c} \mathcal{Z}[c] \qquad \mathcal{Z}[c] = \left(\frac{2t}{J}\right)^{M_{h}[c]} \sum_{n} \frac{(\beta J/2)^{n}}{n!} \delta_{n,M_{h}+M_{\uparrow\downarrow}+M_{Q}}$$

The sign of any term is set by: $\tau_{c} \equiv (-1)^{N_{h}^{\downarrow}[c]+N_{h}^{h}[c]}$

 $N_h^h[c]$ of holon exchanges The (fermionic) number

 $N_h^{\downarrow}[c]$ The number of spinon-holon 'collisions'

arXiv: 0802.0273

RVB: the statistical rational

Resonating valence bond states:

Quantum liquid 'organizing away' the Weng 'collision signs', lowers the energy!

Weng statistics compatible with a d-wave superconducting ground state

Field theory: "Mutual Chern-Simons"

Coherent state description:

- holes: hard core bosons
- spins: Schwinger bosons

$$H_{t} = -t \sum_{\langle ij \rangle \sigma} h_{i}^{+} h_{j} \left(e^{iA_{ij}^{s} - i\phi_{ij}^{0}} \right) b_{j\sigma}^{+} b_{i\sigma} \left(e^{i\sigma A_{ji}^{h}} \right) + h.c.$$
$$H_{J} = -\frac{J}{2} \sum_{\langle ij \rangle} \hat{\Delta}_{ij}^{s}^{+} \hat{\Delta}_{ij}^{s} \qquad \hat{\Delta}_{ij}^{s} = \sum_{\sigma} e^{-i\sigma A_{ij}^{h}} b_{i\sigma} b_{j-\sigma}$$

Statistics: mutual flux π attachments!

$$H_{t} = -t \sum_{\langle ij \rangle \sigma} h_{i}^{+} h_{j} \left(e^{iA_{ij}^{s} - i\phi_{ij}^{0}} \right) b_{j\sigma}^{+} b_{i\sigma} \left(e^{i\sigma A_{ji}^{h}} \right) + h.c. \quad H_{J} = -\frac{J}{2} \sum_{\langle ij \rangle} \hat{\Delta}_{ij}^{s}^{+} \hat{\Delta}_{ij}^{s} \qquad \hat{\Delta}_{ij}^{s} = \sum_{\sigma} e^{-i\sigma A_{ij}^{h}} b_{i\sigma} b_{j-\sigma} b_{j-\sigma}$$

Charge e condensate:

Spins Arovas-Auerbach massive RVB:

=> d-wave superconductor supporting massless Bogoliubov excitations!

Topologically subtly different from BCS superconductor: $\frac{h}{2e}$ vortex carries S=1/2 quantum number.

 $\left\langle h_{i}^{+}\right\rangle \neq 0$

 $\left\langle \widehat{\Delta}_{ij}^{s} \right\rangle \neq 0$

Plan

1. The idea of Mott collapse

2. Mottness versus "Weng statistics"

3. Statistics and t-J numerics

4. Fermions, scale invariance and Ceperley's path integral

t-J numerics: high T expansions

12-th order in 1/T, down to $T = 0.2 J \dots (PRL 81, 2966 (1998))$

- Contrast in momentum distribution $(\partial_k n_k, \partial_T n_k)$ tiny compared to equivalent free fermion problem

- Fermi-arcs develop with pairing correlations: no big Fermi surface, on its way to the d-wave ground state!

t-J numerics: high T predictions

Take J << t, low hole density:

Free case:
$$\lambda_{free} = a \sqrt{\frac{2zt}{k_B T}}, \lambda_{free}(T_F) \approx r_s$$

t-J model: hole thermal de Broglie wavelength limited by spin-spin correlation length through 'collision signs'!

Free case: below the Fermi temperature the high T expansion is strongly oscillating because of 'hard' Fermion signs.

t-J model: positive contributions increasingly outnumber negative ones since 'signs are organized away'!

t-J numerics: the DMRG stripes

Weng statistics implies much less 'delocalization pressure' compared to Fermi-Dirac: competing 'localizing' instabilities spoil the superconducting fun!

Plan

1. The idea of Mott collapse

2. Mottness versus "Weng statistics"

3. Statistics and t-J numerics

4. Fermions, scale invariance and Ceperley's path integral

Statistical quantum criticality

Weng- and Fermi-Dirac statistics microscopically incompatible: Mott collapse should turn into a first order phase separation transition ...

But Mark claims a quantum critical end point !?

Fermionic sign problem

Imaginary time path-integral formulation

$$\mathcal{Z} = \operatorname{Tr} \exp(-\beta \hat{\mathcal{H}})$$
$$= \int d\mathbf{R} \rho(\mathbf{R}, \mathbf{R}; \beta)$$
$$\mathbf{R} = (\mathbf{r} - \mathbf{r}_{-}) \in \mathbb{R}^{Nd}$$

$$\mathbf{R} = (\mathbf{r}_1, \dots, \mathbf{r}_N) \in \mathbb{R}^N$$

$$\rho_{B/F}(\mathbf{R}, \mathbf{R}; \beta) = \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \rho_D(\mathbf{R}, \mathcal{P}\mathbf{R}; \beta)$$

$$= \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \int_{\mathbf{R} \to \mathcal{P}\mathbf{R}} \mathcal{D}\mathbf{R}(\tau) \exp\left\{-\frac{1}{\hbar} \int_0^{\hbar/T} \mathrm{d}\tau \left(\frac{m}{2} \dot{\mathbf{R}}^2(\tau) + V(\mathbf{R}(\tau))\right)\right\}$$

Boltzmannons or Bosons:

- integrand non-negative
- probability of equivalent classical system: (crosslinked) ringpolymers

Fermions:

- negative Boltzmann weights
- non probablistic!!!
The nodal hypersurface

Antisymmetry of the wave function

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_j,\ldots,\mathbf{r}_N)=-\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_j,\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_N)$$

Free Fermions

Free Fermions

$$\Psi_{0}(\mathbf{R}) \sim \text{Det} (e^{i\mathbf{k}_{i}\mathbf{r}_{j}})_{ij} \qquad d=2$$

$$\Psi_{0}(\mathbf{R}) \sim \text{Det} (e^{i\mathbf{k}_{i}\mathbf{r}_{j}})_{ij} \qquad d=2$$

$$\Psi_{0}(\mathbf{R}) \sim \text{Det} (e^{i\mathbf{k}_{i}\mathbf{r}_{j}})_{ij} \qquad d=2$$

$$P = \bigcup_{i \neq j} P_{ij}$$

$$P_{ij} = \{\mathbf{R} \in \mathbb{R}^{Nd} | \mathbf{r}_{i} = \mathbf{r}_{j}\}$$

$$\dim P = Nd - d$$
Nodal hypersurface

$$\Omega = \{\mathbf{R} \in \mathbb{R}^{Nd} | \Psi(\mathbf{R}) = 0\}$$

$$\dim \Omega = Nd - 1$$
Test particle

Constrained path integrals

Formally we can solve the sign problem!!

$$\rho_F(\mathbf{R}, \mathbf{R}; \beta) = \frac{1}{N!} \sum_{\mathcal{P}, \text{even}} \int_{\gamma: \mathbf{R} \to \mathcal{P}\mathbf{R}}^{\gamma \in \Gamma(\mathbf{R}, \mathcal{P}\mathbf{R})} \mathcal{D}\mathbf{R}(\tau) \exp\left\{-\frac{1}{\hbar} \int_0^{\hbar/T} \mathrm{d}\tau \left(\frac{m}{2} \dot{\mathbf{R}}^2(\tau) + V(\mathbf{R}(\tau))\right)\right\}$$
$$\Gamma(\mathbf{R}, \mathbf{R}') = \{\gamma: \mathbf{R} \to \mathbf{R}' | \rho_F(\mathbf{R}, \mathbf{R}(\tau); \tau) \neq 0\}$$

Reading the worldline picture

Persistence length

$$l^{2}(\tau) = \langle (\mathbf{r}_{i}(\tau) - \mathbf{r}_{i}(0))^{2} \rangle = 2d\mathcal{D}\tau = 2d\frac{\hbar}{2m}\tau$$

Collision time

$$l^2(\tau_c) \simeq r_s^2 \to \tau_c \simeq \frac{1}{2d} \frac{2m}{\hbar} n^{-2/d}$$

Associated energy scale

$$\hbar\omega_c = \frac{\hbar}{\tau_c} \simeq d \frac{\hbar^2}{2m} n^{2/d} \simeq E_F$$

Average node to node spacing $\sim r_s = \left(\frac{V}{N}\right)^{1/d} = n^{-1/d}$ tijd ruimte

Key to fermionic quantum criticality

At the QCP scale invariance, no E_F

Nodal surface has to become fractal !!!

Hydrodynamic backflow

Feynman-Cohen: mass enhancement in ⁴He

Wave function ansatz for "foreign" atom moving through He superfluid with velocity small compared to sound velocity:

$$g(\mathbf{r}) \sim \frac{\mathbf{k}\mathbf{r}}{r^3} \quad \rightarrow \quad \Psi = \phi \exp[i\mathbf{k}\left(\mathbf{r}_A + \sum_{i \neq A} \frac{\mathbf{r}_i - \mathbf{r}_A}{r_{iA}^3}\right)]$$

Backflow wavefunctions in Fermi systems

$$\psi_{bf}(\mathbf{R}) \sim \operatorname{Det} \left(e^{i\mathbf{k}_i \tilde{\mathbf{r}}_j} \right)_{ij}$$

 $\tilde{\mathbf{r}}_j = \mathbf{r}_j + \sum_{l(\neq j)} \eta(r_{jl})(\mathbf{r}_j - \mathbf{r}_l)$

Widely used for node fixing in QMC

→ Significant improvement of variational GS energies

Frank's fractal nodes ...

Feynman's fermionic backflow wavefunction:

$$\psi_{bf}(\mathbf{R}) \sim \operatorname{Det} \left(e^{i\mathbf{k}_i \tilde{\mathbf{r}}_j} \right)_{ij}$$
$$\tilde{\mathbf{r}}_j = \mathbf{r}_j + \sum_{l(\neq j)} \eta(r_{jl})(\mathbf{r}_j - \mathbf{r}_l)$$
$$\eta(r) = \frac{a^3}{r^3 + r_0^3}$$

Frank Krüger

Fermionic quantum phase transitions in the heavy fermion metals

Paschen et al., Nature (2004)

Turning on the backflow

MC calculation of n(k)

doping, density -----

Further reading.

Overview: J. Zaanen and B.J. Overbosch, arXiv: 0911.4070 (Phil.Trans.Roy.Soc. A, in press).

Weng statistics: K. Wu, Z.Y. Weng and J. Zaanen, PRB 77, 155102 (2008); arXiv:1102.2941.

Mott collapse and "conformal" superconductivity: S.-X. Yang et al, PRL 106, 047004 (2011).

Fractal nodes: F. Kruger and J. Zaanen, PRB 78, 035104 (2008)

In summary ...

1. Mott collapse: cuprates, heavy fermions? DCA is convincing!

2. Mottness and Weng statistics

3. Statistics and t-J numerics

4. Ceperley's path integral: quantum statistics can go scale invariant

Why Tc is high ... JZ, Nature 430, 512(2004)

400 Fermionic strange metal quantum 300 temperature (K) critical state 200 antiferromagne pseudogap 100 Fermi liquid superconductor 0 0.2 0.3 0.1 0 hole doping

BCS type transition: pairs form at Tc

But BCS wisdoms like:

$$2\Delta = \hbar \omega_{boson} e^{-1/\lambda}$$

$$2\Delta \approx 3.5 k_B T_c$$

Need the Fermi energy!

Why is Tc high?

"Because there is superglue binding the electrons in pairs"

Wrong!

The superfluid density is tiny, it is very easy to 'bend and twist' a high Tc superconductor. **Its cohesive energy sucks.** Tc's are set by the competition between the two sides ...

The theory of the mechanism should explain why the free energy of the metal is seriously BAD.

Superconductivity born from a fermionic critical state ...

The glue-ish essence of BCS

Let's believe

'retarded glue'' =>

Gap equation:

$$1 - g \chi_{pp}(k_B T, \Delta, \hbar \omega_B) = 0$$

Glue strength SC gap Glue frequency

The pair susceptibility of the Fermi liquid is a logarithm because of EF:

$$\chi_{pp}(k_B T, \cdots) = \ln\left(\frac{E_F \rightarrow \hbar \omega_B}{k_B T}, \cdots\right)$$

$$\Rightarrow k_B T_c = \hbar \omega_B e^{-1/\lambda}, 2\Delta \approx 3.5 k_B T_c$$

Hitting the critical stuff with
glueImage: Strength of the strength of t

Cooper instability of the fermionic quantum critical state?

The pair susceptibility has just to be the most divergent one! Form largely fixed by scaling (non-conserved currents):

$$\chi_{pp}(\omega,T) \propto \frac{Z}{T^{(2-\eta_{pp})/z}} \Phi_{pp}\left(\frac{\hbar\omega}{k_{B}T}\right) \qquad \hbar\omega \geq k_{B}T: \quad \chi_{pp} \propto \frac{1}{(i\omega)^{(2-\eta_{pp})/z}} \\ \hbar\omega \leq k_{B}T: \quad \chi_{pp} \propto \frac{1}{T^{(2-\eta_{pp})/z}} \frac{1}{1-i\omega\tau_{h}}$$

Scaling versus the BCS gap

J.-H. She

56

Gap equation:
$$1 - g\chi'(\omega = 0) = 0$$

 $\chi'(\omega = 0) = 2 \int_0^{2\omega_D} d\omega' \frac{\chi''(\omega')}{\omega'} \implies 1 - \frac{g}{\omega_c} \int_{2\overline{\Delta}_0}^{2\hbar\overline{\omega}_B} \frac{d\overline{\omega}}{\overline{\omega}^{\alpha}} = 0$

Fermi-liquid:
$$\omega_c = E_F, \lambda = \frac{g}{E_F}, \alpha = 1 \implies \Delta_0 = 2\hbar\omega_B e^{-1/\lambda}$$

Critical case: $\lambda = \frac{g}{\omega_c}, \alpha = \frac{2 - \eta_{pp}}{z} + 1 \implies$
'Huang's equation': $\Delta_0 = 2\hbar\omega_B \left(\frac{\lambda}{\lambda + (2\omega_B/\omega_c)^{(2 - \eta_{pp})/z}}\right)^{\frac{z}{2 - \eta_{pp}}}$

J.-H. She

$$\Delta_{0} = 2\hbar\omega_{B} \left(\frac{\lambda}{\lambda + (2\omega_{B}/\omega_{c})^{(2-\eta_{pp})/z}}\right)^{\frac{z}{2-\eta_{pp}}}$$

Strongly interacting critical state, e.g. 1+1D Ising: $\eta_{pp} = 1/4$, z = 1

Huang's equation versus high Tc

Typical phonon-, cut-off energy:

E.g. 1+1D Ising:

Typical gap:

Fermi-liquid:

Critical case:

$$\eta_{pp} = 1/4, \quad z = 1$$

$$\frac{\omega_B}{\omega_c} = \frac{50 \ meV}{500 \ meV}$$

$$\Delta_0 = 40 \, meV$$

 $\lambda \approx 0.13 \parallel \parallel$

In summary

1. High Tc's normal state, heavy fermions: experiment demonstrates the existence of a mysterious scale invariant state formed from fermions.

2. Fermionic quantum criticality is **not governed by Wilsonian RNG**: the fractal nodal surface, ...

3. Quantum critical BCS: moderate glue yields a high Tc !

$$\Delta_{0} = 2\hbar\omega_{B} \left(\lambda / \left(\lambda + \left(2\omega_{B} / \omega_{c} \right)^{\left(2 - \eta_{pp} \right) / z} \right) \right)^{\frac{z}{2 - \eta_{pp}}}$$

Quantum criticality or 'conformal fields'

Fractal Cauliflower (romanesco)

Where is the cuprate quantum critical point? ...

High precision resistivities La2-xSrxCuO4. Science 323, 603 (2009)

 $\rho = \rho_0 + \alpha_1 T + \alpha_2 T^2$

Fermion hunting club ...

Overbosch


```
Krueger, Mukhin,
                    Weng,
                              Mitas,
                                        Fisher,
                                                  Ceperley,
Urbana
         Moscow
                    Beijing
                              Raleigh
                                        Microsoft Urbana
```

Further reading/playing:

http://demonstrations.wolfram.com/DressedMultiParticleElectronWaveFunctions/ http://physics.aps.org/

arXiv:0802.0273, 0802.2455, **0804.2161**, 0807.1279

Senthil's critical Fermi-surface

$$A\left(\vec{K},\omega,T,g\right) = \frac{c_0}{\left|\omega\right|^{\alpha(k_{//})/z(k_{//})}} F\left(\frac{c_1\omega}{k_{\perp}^{z(k_{//})}},\frac{\omega}{T},k_{\perp}\left|g-g_c\right|^{-\nu(k_{//})}\right)$$

arXiv:0803.4092

64

BCS nodal structure

Conjecture: the 'thermodynamic measure' of the BCS nodal holes is larger for fractal nodal structure, because the latter is more configuration space filling.

Temperature dependence of nodes

The nodal hypersurface at finite temperature

 $\Omega(\mathbf{R}_0;\beta) := \left\{ \mathbf{R} \in \mathbb{R}^{Nd} | \rho_F(\mathbf{R}_0, \mathbf{R}; \beta) = 0 \right\} \qquad \dim \Omega = Nd - 1$

Free Fermions

$$\rho_F(\mathbf{R}_0, \mathbf{R}; \beta) = (4\pi\lambda\beta)^{-dN/2} \operatorname{Det} \left[\exp\left(-\frac{(\mathbf{r}_i - \mathbf{r}_{j0})^2}{4\lambda\beta}\right) \right]_{ij} \qquad \lambda = \frac{\hbar^2}{2m}$$
$$\rho_F(\mathbf{R}_0, \mathbf{R}, \beta) \xrightarrow{T \to 0} \Psi_0^*(\mathbf{R}_0) \Psi_0(\mathbf{R}) \sim \operatorname{Det} \left(e^{i\mathbf{k}_i \mathbf{r}_j}\right)_{ij}$$

Fermi liquid's nodal pocket

Average distance to the nodes $n(\mathbf{r}) = \int d\mathbf{R} \Psi^*(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \Psi(\mathbf{r}_1 + \mathbf{r}, \mathbf{r}_2, \dots, \mathbf{r}_N)$ $= \int_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} n_{\mathbf{k}}$

Free fermions

$$n(\mathbf{r}) = (k_F r)^{-d/2} J_{d/2}(k_F r)$$

First zero $r_0 = (3.14, 3.83, 4.49)k_F^{-1} \sim r_s$

Just Ansatz or physics?

Mott transition, continuous

Backflow turns hydrodynamical at the quantum critical point!

Scanning tunneling spectroscopy

Seamus Davis, Cornell

Zaanen-Gunnarsson (1987)

Large S on 3-band Hubbard model:

Ceperley path integral: Fermi gas in momentum space

Single particle propagator:

$$g(\boldsymbol{k},\boldsymbol{k}',\tau) = 2\pi\delta(\boldsymbol{k} - \boldsymbol{k}')e^{-\frac{|\boldsymbol{k}|^2\tau}{2\hbar m}}$$

single particle momentum conserved

Sergei Mukhin

Fractal dimension of the nodal surface

Calculate the correlation integral $C(r) \sim r^{\nu}$ on random d=2 dimensional cuts

Ceperley path integral in 1+1D

Nodal surface (Nd-1)= Pauli surface (Nd-d)

Ordering is preserved, statistics changes in N! relabellings

 $x_1(\tau) < x_2(\tau) < \cdots < x_N(\tau), \forall \tau$

Particles become distinguishable.

Statistical physics of hard core polymers (Pokrovsky, Talapov)

Fermi energy: $E_F = \hbar / \tau_{collisions}$

Entropic repulsions: algebraic order, sound velocity = Fermi velocity.

JZ, PRL 2000

Fermi gas = cold atom Mott insulator in harmonic trap!

$$\rho_{F}(K,K'';\tau) = \prod_{k_{1} \neq k_{2} \neq \cdots \neq k_{N}} 2\pi \delta(k_{i} - k_{i}'') e^{-\frac{|k_{i}|^{2}\tau}{2\hbar m}}$$

Mukhin, JZ, ..., Iranian J. Phys. (2008)

Switching on interactions

Single particle spectral function: $A(\mathbf{k}, \omega) = \frac{1}{\pi} \frac{Z\gamma}{(\omega - v_F k_{\parallel})^2 + \gamma^2}$ $\gamma \sim \omega^2 \sim k_{\parallel}^2 = (k - k_F)^2$

Configuration space: all Mott configurations of particles in trap Fermi-gas: all configurations isolated = nodal surface

Fermi-liquid: $n_F^{d-1} \times (n - n_F)$ pieces of (d-1) dimensional antinodal surfaces each of which has volume $n_F^{d-2} \times (n - n_F)$ $(\vec{k} = \frac{2\pi}{a}\vec{n})$

Fermi-surface protection: antinodal surface shrinks to a point!

75

Extracting the fractal dimension

The Hausdorff dimension. The Hausdorff dimension of a metric space X, $\dim_H(X)$, is the infimimum of the numbers α with the following property: For any $\epsilon > 0$ there is a $\delta > 0$ and a cover \mathfrak{U} of X such that the sets $B \in \mathfrak{U}$ all have diameter |B| smaller than δ and

$$\sum_{B \in \mathfrak{U}} (|B|)^{\alpha} < \epsilon.$$

The correlation integral:

$$C(r) = \lim_{n \to \infty} \frac{1}{n^2} \sum_{i,j=1}^n \Theta(r - |\mathbf{r}_i - \mathbf{r}_j|)$$
$$= \int_0^r \mathrm{d}^D r' c(\mathbf{r}')$$

For fractals:

$$C(r) \sim r^{\nu}, \quad \nu \leq \dim_H$$

Inequality very tight, relative error below 1%

Grassberger & Procaccia, PRL (1983)

The Gross list: the 14 Big Questions

- 1. The origin of the universe?
- 2. What is dark matter?

2004

11. What is space-time?

14. New states of matter: are there generic non-Fermi liquid states of interacting condensed matter?

Solution of the Fermion sign problem??

Empty slide

Empty slide