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Motivation: fast thermalization at RHIC

~
 1

0 
fm

thermalized after < 1 fm/c

There are overwhelming evidences that relativistic heavy ion collision program at 
RHIC (now also at the LHC) created strongly coupled quark-gluon plasma (sQGP)
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Successful description of experimental data is based on hydrodynamic simulations 
of an almost perfect fluid of                      starting on very early (< 1 fm/c)

This very fast thermalization (understood as time after the collision when the 
stress tensor is to a very good accuracy described by hydrodynamics) is a puzzle

AdS/CFT naturally leads to such short thermalization times, which motivated us   
to scan through a large set of far-from-equilibrium initial conditions searching for 
generic features of thermalization of (holographic) strongly coupled media

Heinz [nucl-th/0407067]

�/s = O(1/4⇥)



Model: boost-invariant flow
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The simplest, yet phenomenologically interesting field theory dy-
namics is the boost-invariant flow with no transverse expansion.

= =

relevant for central
rapidity region

no elliptic flow
(~ central collision)

In Bjorken scenario dynamics depends only on proper time

[Bjorken 1982]

pre-equilibrium stage
QGP
mixed phase
hadronic gas

described
by hydrodynamics

Figure 1: Description of QGP formation in heavy ion collisions. The kinematic landscape is
defined by τ =

√

(x0)2 − (x3)2 ; y = 1
2 log x

0+x
3

x0−x3 ; x⊥={x1, x2} , where the coordinates along the
light-cone are x0 ± x1, the transverse ones are {x1, x2} and τ is the proper time, y the “space-time
rapidity”.

[3]. The hydrodynamic regime has to last long enough and start soon enough after the

collision in order to explain the observed collective effects. Moreover, the smallness of the

viscosity which can be extracted from hydrodynamical simulations describing the data leads

to an almost-perfect fluid behaviour of the QGP, and thus to a short mean-free path inside

the fluid. Putting together these experimental inputs, and in order to go beyond a mererly

phenomenological description, it appears to be theoretically necessary to investigate as

much as possible the properties of a strongly-coupled Quantum-Chromodynamic plasma.

In the absence of nonperturbative methods applicable to real-time dynamics of strongly

coupled Quantum Chromodynamic (QCD) plasma, one is led to consider similar problems

from the point-of-view of the AdS/CFT correspondence, that is looking for the charac-

teristics of plasma in a gauge theory for which the AdS/CFT correspondence takes its

simplest form – the N = 4 supersymmetric Yang-Mills theory [4] which posseses a known

and tractable gravity dual.

Although the N = 4 gauge theory is supersymmetric and conformal and thus quite

different from QCD at zero temperature, both supersymmetry and scale-invariance are

broken explicitly at finite temperature and we may expect qualitative similarities with

QCD plasma for a range of temperatures above the QCD deconfinement phase transition1.

Indeed, the gauge/gravity dual calculation [5] showing, in a static setting, that the

viscosity over entropy ratio η/s is very small (equal to 1/4π) and even suggesting a universal

lower bound, is in qualitative agreement with hydrodynamic simulations of QCD plasma

and was a poweful incentive to explore further the AdS/CFT duality approach.

In order to go beyond static calculations, one has to adapt the dual AdS/CFT approach

to the relativistic kinematic framework of heavy-ion reactions, where two ultra-relativistic

heavy nuclei collide and form an expanding medium, see Fig.1. It is convenient, initially,

1There exist more refined versions of the AdS/CFT correspondence which may have more features in

common with QCD, however the gravity backgrounds are much more complicated and we will not consider

them here.

– 2 –

described by 
AdS/CFT in this scenario

and stress tensor (in conformal case) is entirely expressed in terms of energy density

with

⌧ = 0

We are interested in setting strongly coupled non-equilibrium initial states at              
and letting them evolve unforced to achieve local equilibrium (all using AdS/CFT).

⌧ = 0

� =
q

(x0)2 � (x1)2

and

�Tµ
�⇥ = diag {�(⇥), pL(⇥), pT (⇥), pT (⇥)}

pT (⇥) = �(⇥) +
1

2
⇥�0(⇥)pL(⇥) = ��(⇥)� ⇥�0(⇥)



Tool: AdS/CFT correspondence
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From applicational perspective AdS/CFT is a tool for computing correlation functions 
in certain strongly coupled gauge theories, such as          SYM at large      and N = 4

In its simplest instance AdS/CFT maps the dynamics of the stress tensor of a 
holographic CFT1+3 into (1+4)-dimensional AdS geometry being a solution of

Nc �

Rab �
1

2
Rgab � 6 gab = 0

The stress tensor is read off from near-
boundary expansion of dual solution

Of interest are geometries which interpolate between far-from-equilibrium states at 
the boundary at         and locally thermalized ones at (some) larger ⌧ = 0

Geometries dual to equilibration describe gravitational collapse in AdS spacetime

Maldacena [hep-th/9711200]
review: Mc Greevy 0909.0518 [hep-th]

Skenderis et al. [hep-th/0002230]

⌧

Chesler & Yaffe 0812. 2053 [hep-th]

⌧bulk = 0
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Initial state and the choice of bulk coordinantes

5/14

Initial states are solutions of gravitational constraints on chosen              hypersurface⌧bulk = 0

Symmetries of a stress tensor dictate metric ansatz 

Diffeomorphism freedom = one is free to choose 2 functions out of      ,      and      
leaving 3 dynamical warp factors

fzz f�z f⌧⌧

Different choices cover different patches of spacetime and lead to different foliations 
by constant time hypersurfaces (in particular, different bulk initial time hypersurface)

0

z

x
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x

1

⌧FG
bulk = 0

( ),
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In 0906.4423 [hep-th] we chose
                        , and looked at 
constraint equations at

,
⌧FG
bulk = 0

Obtained warp factors served as 
initial data for numerical 
simulations in 1103.3452 [hep-th]
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Energy density at early time

6/14

Beuf, MPH, Janik, Peschanski 0906.4423 [hep-th]

Einstein’s equations when viewed as evolution equations in radial direction require 
specifying two „initial” data: boundary metric and dual stress tensor (here       )

In general this problem is very hard to solve, but one can analytically obtain the bulk 
metric close to the boundary in the small    expansion, e.g.

Plugging the general expression for regular early time power series for energy density

✏(⌧)

✏(⌧) = ✏0 + ✏1⌧ + ✏2⌧
2 + ✏3⌧

3 + . . .

This implies that at early time

u

✏(⌧) = ✏0 + ✏2⌧
2 + ✏4⌧

4 + . . .

⌧FG
bulk = 0

. . .+
1

u
f??du

2 = . . .+
1

u

⇢
1 + (✏+

1

2
⌧✏0)u2 + (

1

8⌧
✏0 +

5

24
✏00 +

1

24
⌧✏000)u3 + . . .

�

. . .+
1

u
f??du

2 = . . .+
1

u

⇢
1 + (✏0 +

3

2
✏1⌧ + 2✏2⌧

2 +
5

2
✏3⌧

3 + . . .)u2 + (
1

8⌧
✏1 +

2

3
✏2 +

15

8
✏3⌧ + . . .)u3 + . . .

�

A)       has an expansion in even powers of proper time:✏(⌧)

B) FG bulk time derivatives of warp factors vanish at ⌧FG
bulk = 0

one finds out that all odd terms need to vanish for metric to be regular at 

cf.  Kovchegov & Taliotis 0705.1234 [hep-ph]



„FG” bulk initial state
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Beuf, MPH, Janik, Peschanski 0906.4423 [hep-th]

We choose the following metric ansatz

ds

2 =
1

u

n 1

4u
du

2 � a

2
d⌧

2 + ⌧

2
b

2
dy

2 + c

2
dx

2
?

o

Denoting                         ,                         and                         and keeping in 
mind that time derivatives of warps vanish at             leads to constraints

a(⌧ = 0, u) = a0(u) b(⌧ = 0, u) = b0(u) c(⌧ = 0, u) = c0(u)

⌧FG
bulk = 0

b0(u) = a0(u) and

The latter eqn can be solved for          once a regular          is provided

a000(u)

a0(u)
= �c000(u)

c0(u)

a0(u) c0(u)

Typical example of a solution is                      and                     , we took 20 
different initial conditions

c0(u) = cosh(u) a0(u) = cos(u)

As shown in the original paper, timelike warp always has a zero for some    , which is 
a coordinate singularity of the FG chart

u



The idea behind solving initial value problem
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FG coordinates are not well suited for numerics, because it is hard to find natural 
boundary conditions to cut off radial integration

For this reason we considered another coordinate patch, which coincides with FG 
one at            , but otherwise it is different:                      instead of ⌧FG

bulk = 0 fN
�� ⇠ (z0 � z)2 fFG

zz = 1

f⌧⌧     measures the flow of coordinate time so if it vanishes at fixed position, this point 
does not evolve providing natural boundary conditions and nice bulk cut-off 

By increasing     and running numerics one recovers more and more bulk (and so 
boundary dynamics) until on crosses the event horizon at             ! 
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Metric parametrization and numerics
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ds

2 =
1

u

n 1

4u
du

2 � a

2
d⌧

2 + ⌧

2
b

2
dy

2 + c

2
dx

2
?

o

Instead of                                                        we are using the following metric 
ansatz 

ds

2 =
1

u

n 1

4u
d

2
du

2 � ↵

2
a

2
d⌧

2 + ⌧

2
a

2
b

2
dy

2 + c

2
dx

2
?

o

where                   ,     is a cut-off for radial integration and         is the lapsea = cos(u/u0) u0 ↵2a2

Now dynamical warp-factors are  ,   and    and    expressed in terms of this trio
measures distances between constant time slices. We choose   `s giving stable code 

b c d

↵

↵

(caveat: for generic    time on the boundary does not coincide with simulation (so bulk) time)↵

We are using unconstrained ADM evolution for  ,   and    and their time derivatives
with initial data taken as          from FG coordinates and     chosen for each of them
by examining the behavior of reproduced spacetime

c0(u) u0

b c d

Numerical implementation relies on spectral discretisation in the radial direction 
and high order adaptive Runge-Kutta time stepping.



Non-equilibrium entropy
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Rangamani et al. 0902.4696 [hep-th]
Booth, MPH, Spalinski 0910.0748 [hep-th]

Theory Numerics
singularity
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⌧

z2

Beyond equilibrium event horizon is not the right notion of entropy.

In the gravity dual to boost-invariant flow it seems sensible to associate non-
equilibrium entropy with unique translationally-invariant apparent horizon

Its area element is associated with points on the boundary lying on the same

All considered initial data had a non-zero non-equilibrium entropy at                  , 
thus thermalization is not horizon formation, but rather horizon equilibration!

⌧
boundary

= 0

ingoing radial null geodesic (bulk-boundary map)



Initial data and corresponding energy densities
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Thermalization time
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2

solution at the AdS boundary. The details will apear in a
subsequent paper [11], while in the present letter we will
concentrate on the physical questions mentioned above.

Boost-invariant plasma and hydrodynamics. The
traceless and conserved energy-momentum tensor of a
boost-invariant conformal plasma system with no trans-
verse coordinate dependence is uniquely determined in
terms of a single function ⇧T⇤⇤ ⌃ – the energy density at
mid-rapidity ⇤(⇥). The longitudinal and transverse pres-
sure are consequently given by

pL = �⇤� ⇥
d

d⇥
⇤ and pT = ⇤+

1

2
⇥
d

d⇥
⇤ . (1)

It is quite convenient to eliminate explicit dependence
on the number of colors Nc and degrees of freedom by
introducing an e�ective temperature Teff through

⇧T⇤⇤ ⌃ ⇤ ⇤(⇥) ⇤ N2
c · 3

8
�2 · T 4

eff . (2)

Let us emphasize that Teff does not imply in any way
thermalization. It just measures the temperature of a
thermal system with an identical energy density as ⇤(⇥).

All order viscous hydrodynamics amounts to present-
ing the energy-momentum tensor as a series of terms ex-
pressed in terms of flow velocities uµ and their deriva-
tives with coe⌅cients being proportional to appropriate
powers of Teff , the proportionality constants being the
transport coe⌅cients. For the case of N = 4 plasma,
the above mentioned form of Tµ⇥ is not an assumption
but a result of a derivation from AdS/CFT [7]. Hydro-
dynamic equations are just the conservation equations
 µTµ⇥ = 0, which are by construction first-order di�er-
ential equations for Teff .

In the case of boost-invariant conformal plasma this
leads to a universal form of first order dynamical equa-
tions for the scale invariant quantity

w = Teff · ⇥ (3)

namely

⇥

w

d

d⇥
w =

Fhydro(w)

w
, (4)

where Fhydro(w) is completely determined in terms of the
transport coe⌅cients of the theory1. For N = 4 plasma
at strong coupling Fhydro(w)/w is known explicitly up to
terms corresponding to 3rd order hydrodynamics [13]

2

3
+

1

9�w
+
1� log 2

27�2w2
+
15� 2�2 � 45 log 2 + 24 log2 2

972�3w3
+. . .

(5)

1
This is quite reminiscent of [12] where all-order hydrodynamics

was postulated in terms of linearized AdS dynamics.
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F �w⇥
w

FIG. 1. a) F (w)/w versus w for various initial data. b)
Pressure anisotropy 1 � 3pL

� and for a selected profile. Red,

blue and green curves correspond to 1st, 2nd and 3rd order
hydrodynamics respectively.

The importance of formula (4) lies in the fact that if the
plasma dynamics would be governed entirely by (even
resummed) hydrodynamics including dissipative terms
of arbitrarily high degree, then on a plot of ⇤

w
d
d⇤w ⇤

F (w)/w as a function of w trajectories for all initial con-
ditions would lie on a single curve given by Fhydro(w)/w.
If, on the other hand, genuine nonequilibrium processes
would intervene we would observe a wide range of curves
which would merge for su⌅ciently large w when thermal-
ization and transition to hydrodynamics would occur.
In Figure 1a we present this plot for 20 trajectories

corresponding to 20 di�erent initial states. It is clear
from the plot that nonhydrodynamic modes are very
important in the initial stage of plasma evolution, yet
for all the sets of initial data, for w > 0.65 the curves
merge into a single curve characteristic of hydrodynam-
ics. In Figure 1b we show a plot of pressure anisotropy
1� 3pL

⌅ ⇤ 12F (w)
w � 8 for a selected profile and compare

this with the corresponding curves for 1st, 2nd and 3rd

order hydrodynamics. We observe on this example, on
the one hand, a perfect agreement with hydrodynamics
for w > 0.63 and, on the other hand, a quite sizeable
pressure anisotropy in that regime which is nevertheless
completely explained by dissipative hydrodynamics.
In order to study the transition to hydrodynamics in

more detail, we will adopt a numerical criterion for ther-
malization which is the deviation of ⇥ d

d⇤w from the 3rd

order hydro expression (5)
�����

⇥ d
d⇤w

F 3rd order
hydro (w)

� 1

����� < 0.005. (6)

Despite the bewildering variety of the nonequilibrium
evolution, we will show below that there exist, however,
some surprising regularities in the dynamics.

Initial and final entropy. Apart from the energy-
momentum tensor components, a very important physi-
cal property of the evolving plasma system is its entropy
density S (per transverse area and unit (spacetime) ra-
pidity). In the general time-dependent case, the precise

hydro
large anisotropy
in local equilibrium

Local thermalization: obeys eqns of hydrodynamics

We define        by �(⇤) =
3

8
N2

c ⇥
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4 and use dimensionless qty w = � Teff

Equations of hydro:

Teff
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on the number of colors Nc and degrees of freedom by
introducing an e�ective temperature Teff through

⇧T⇤⇤ ⌃ ⇤ ⇤(⇥) ⇤ N2
c · 3

8
�2 · T 4

eff . (2)

Let us emphasize that Teff does not imply in any way
thermalization. It just measures the temperature of a
thermal system with an identical energy density as ⇤(⇥).

All order viscous hydrodynamics amounts to present-
ing the energy-momentum tensor as a series of terms ex-
pressed in terms of flow velocities uµ and their deriva-
tives with coe⌅cients being proportional to appropriate
powers of Teff , the proportionality constants being the
transport coe⌅cients. For the case of N = 4 plasma,
the above mentioned form of Tµ⇥ is not an assumption
but a result of a derivation from AdS/CFT [7]. Hydro-
dynamic equations are just the conservation equations
 µTµ⇥ = 0, which are by construction first-order di�er-
ential equations for Teff .

In the case of boost-invariant conformal plasma this
leads to a universal form of first order dynamical equa-
tions for the scale invariant quantity

w = Teff · ⇥ (3)

namely

⇥

w

d

d⇥
w =

Fhydro(w)

w
, (4)

where Fhydro(w) is completely determined in terms of the
transport coe⌅cients of the theory1. For N = 4 plasma
at strong coupling Fhydro(w)/w is known explicitly up to
terms corresponding to 3rd order hydrodynamics [13]
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This is quite reminiscent of [12] where all-order hydrodynamics

was postulated in terms of linearized AdS dynamics.
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FIG. 1. a) F (w)/w versus w for various initial data. b)
Pressure anisotropy 1 � 3pL

� and for a selected profile. Red,

blue and green curves correspond to 1st, 2nd and 3rd order
hydrodynamics respectively.

The importance of formula (4) lies in the fact that if the
plasma dynamics would be governed entirely by (even
resummed) hydrodynamics including dissipative terms
of arbitrarily high degree, then on a plot of ⇤

w
d
d⇤w ⇤

F (w)/w as a function of w trajectories for all initial con-
ditions would lie on a single curve given by Fhydro(w)/w.
If, on the other hand, genuine nonequilibrium processes
would intervene we would observe a wide range of curves
which would merge for su⌅ciently large w when thermal-
ization and transition to hydrodynamics would occur.
In Figure 1a we present this plot for 20 trajectories

corresponding to 20 di�erent initial states. It is clear
from the plot that nonhydrodynamic modes are very
important in the initial stage of plasma evolution, yet
for all the sets of initial data, for w > 0.65 the curves
merge into a single curve characteristic of hydrodynam-
ics. In Figure 1b we show a plot of pressure anisotropy
1� 3pL

⌅ ⇤ 12F (w)
w � 8 for a selected profile and compare

this with the corresponding curves for 1st, 2nd and 3rd

order hydrodynamics. We observe on this example, on
the one hand, a perfect agreement with hydrodynamics
for w > 0.63 and, on the other hand, a quite sizeable
pressure anisotropy in that regime which is nevertheless
completely explained by dissipative hydrodynamics.
In order to study the transition to hydrodynamics in

more detail, we will adopt a numerical criterion for ther-
malization which is the deviation of ⇥ d

d⇤w from the 3rd

order hydro expression (5)
�����

⇥ d
d⇤w

F 3rd order
hydro (w)

� 1

����� < 0.005. (6)

Despite the bewildering variety of the nonequilibrium
evolution, we will show below that there exist, however,
some surprising regularities in the dynamics.

Initial and final entropy. Apart from the energy-
momentum tensor components, a very important physi-
cal property of the evolving plasma system is its entropy
density S (per transverse area and unit (spacetime) ra-
pidity). In the general time-dependent case, the precise

perfect
fluid

1st 2nd 3rd order hydro

Tµ⌫

In conformal hydrodynamics      can be expressed in terms of gradients of      only Tµ⌫ uµ

But here due to symmetries               , so its gradients are trivial uµ@µ = @⌧

Because of this                 in the boost-invariant hydro is a 1st order ODE for rµT
µ⌫ = 0 ✏(⌧)
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FIG. 2. The dynamical horizon (dashed curve) and a radial
null geodesic (solid black curve) sent from the boundary (left
edge of the plot) at � = 0 into the bulk for a sample pro-
file. This curve coincides with a curve of fixed ‘Eddington-
Finkelstein’ proper time �EF = 0.

holographic dictionary for determining entropy is miss-
ing. Nevertheless in the present case due to high symme-
try, entropy seems to be defined unambiguously in terms
of 1/4GN of the dynamical horizon area element mapped
onto the boundary along ingoing radial null geodesics
[10, 14, 15]. This is also the approach that we take here.

For all of the initial profiles that we considered we ob-
served a dynamical horizon which was pierced by a radial
null geodesic starting from ⇥ = 0 on the boundary (see
Figure 2). This shows that the initial conditions had
always some entropy per unit rapidity to start with.

The main very surprising observation of our work is
that the initial entropy density measured in units of ef-
fective temperature at ⇥ = 0 is a key characterization of
the initial state which, to a large extent, determines the
features of the subsequent transition to hydrodynamics
as well as the final produced entropy. Moreover, we find
a surprisingly simple geometrical characterization of our
initial geometry at ⇥ = 0, which is directly correlated
with the initial entropy. We leave the latter issue to [11].

In the following it is convenient to introduce a dimen-
sionless entropy density s

S · Teff (0)
�2 = N2

c · 1
2
�2 · s. (7)

In order to evaluate the final entropy density at ⇥ = ⌅,
we adopted the following strategy. After observing a pas-
sage to hydrodynamics, we fitted 3rd order hydrodynamic
expression for Teff

Teff =
�

(�⇥)1/3

�
1� 1

6� (�⇥)2/3
+

�1 + log 2

36�2 (�⇥)4/3
+

+
�21 + 2�2 + 51 log 2� 24 log2 2

1944�3 (�⇥)2

⇥
(8)

to obtain the remaining single scale �. Since at ⇥ = ⌅
perfect fluid hydrodynamics applies, we can use the stan-
dard expression for entropy to get sfinal = �2 ·Teff (0)�2.

Once this has been done we can now determine the en-
tropy production sfinal � sinitial as a function of sinitial
for all the considered profiles. Despite the huge di⇥er-
ences in the evolution evident in Figure 1a, we observe
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FIG. 3. Entropy production as a function of initial entropy
for various initial conditions.

a clear functional dependence of the entropy production
on the initial entropy. The results are shown in Figure 3
together with a fit of the form

sfinal � sinitial ⇤ 1.59 · s1.55initial. (9)

Properties of thermalization. We will now proceed
to study in detail the properties of the transition from
far from equilibrium regime to hydrodynamics. We
will adopt the criterion (6), which imposes quite precise
agreement between the equations of motion coming from
third order hydrodynamics (being the most prescise de-
scription currently known) and the actual evolution of
the energy density of the plasma obtained from numeri-
cally solving the full Einstein’s equations. This criterion
is quite di⇥erent from criterions based on isotropization
of the longitudinal and transverse pressures like the one
adopted in [8]. In particular, Figure 1b shows quite a size-
able pressure anisotropy, which is nevertheless entirely
due to hydrodynamic modes.
Using the criterion (6), we determine the thermaliza-

tion times for 20 initial profiles. If we were to modify the
threshold, the thermalization time would of course shift
but in general not in a significant manner. However, it is
fair to say that thermalization is not a clear-cut event but
rather happens in some narrow range of proper times.
With this proviso we will now proceed to analyze the

following features of the thermalization time: (i) the di-
mensionless parameter w = ⇥Teff , (ii) the thermalization
time in units of initial temperature and (iii) the ratio of
the e⇥ective temperature at the time of thermalization
to the initial (e⇥ective) temperature.

In Figure 4, we show a plot of the values of w at the
time of thermalization as a function of the initial en-
tropy. We see that for a wide range of initial entropies,
the values of w at thermalization are approximately con-
stant and decrease only for initial data with very small
entropies.

Subsequently, we found unexpectedly rather clean
curves giving the dependence of the thermalization time
on the initial entropy (see Figure 5). This is very surpris-
ing taking into account the huge qualitative di⇥erences
in the evolution of the plasma when starting from the
various initial conditions.

Another important aspect is the question which part
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FIG. 4. The dimensionless parameter w = �Teff at ther-
malization as a function of the initial entropy sinitial. The
straight line corresponds to wth = 0.67.
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ture with a fit of �thTeff (0) = 1/(0.48 + 2.74 · sinitial) (left)
and the ratio of temperatures Tth/Teff (0) (right) at thermal-
ization as functions of the initial entropy.

of the cooling process of the plasma occurs in the far
from equilibrium regime and which part occurs within
hydrodynamic evolution. This can be quantified by the
ratio of the e�ective temperatures at thermalization time
and at � = 0. The plot is shown in Figure 5, and shows
very clear functional dependence on the initial entropy.
The meaning of the points with high entropy requires
some comment. We found that for these initial condi-
tions, the energy density initially rises and only later de-
creases, thus even a ratio of Tth/Teff (0) close to 1 is
realized after a sizable nonequilibrium evolution.

Conclusions. The crucial new feature of the holo-
graphic studies of Bjorken flow reported here is the ability
to track physical observables from the far from equilib-
rium regime at � = 0 up to thermalization and subse-
quent hydrodynamic evolution without introducing any
deformations in the field theory lagrangian. The initial
state is highly anisotropic, in particular always has a
negative longitudinal pressure [8, 9]. Despite the very
rich early time dynamics, which depending on the ini-
tial state might have a plateau, a bump or a sharp de-
crease in the e�ective temperature as a function of proper
time, we uncovered surprising regularities in the behav-
ior of total produced entropy and e�ective temperature
at thermalization as functions of initial entropy (all mea-
sured in units of e�ective temperature at � = 0). An
interesting curiosity is that despite describing an expand-
ing medium, the e�ective temperature at thermalization
might be higher than the initial one for initial states
with su⌅ciently big entropy. For initial states with small
entropy, the energy density at thermalization is much
smaller than the one at � = 0, and hence a significant

part of the cooling process is of a nonequillibrium na-
ture. Moreover we observe generically a sizable pressure
anisotropy at thermalization, which is nevertheless en-
tirely understood in terms of dissipative hydrodynamics.
An e�ective thermalization time wth = Tth�th, i.e. ther-
malization time measured in units of e�ective tempera-
ture at thermalization depends on the initial state, but
not strongly, and is between 0.52 and 0.67 for all 20 ini-
tial states that we considered. Finally, let us note that we
could associate with all these initial data, an initial en-
tropy already at � = 0 due to the presence of a dynamical
horizon. This observation shows that thermalization and
applicability of even all-order viscous hydrodynamics is
not neccessarily associated with the sudden appearance
of a horizon.
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of the cooling process of the plasma occurs in the far
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hydrodynamic evolution. This can be quantified by the
ratio of the e�ective temperatures at thermalization time
and at � = 0. The plot is shown in Figure 5, and shows
very clear functional dependence on the initial entropy.
The meaning of the points with high entropy requires
some comment. We found that for these initial condi-
tions, the energy density initially rises and only later de-
creases, thus even a ratio of Tth/Teff (0) close to 1 is
realized after a sizable nonequilibrium evolution.
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graphic studies of Bjorken flow reported here is the ability
to track physical observables from the far from equilib-
rium regime at � = 0 up to thermalization and subse-
quent hydrodynamic evolution without introducing any
deformations in the field theory lagrangian. The initial
state is highly anisotropic, in particular always has a
negative longitudinal pressure [8, 9]. Despite the very
rich early time dynamics, which depending on the ini-
tial state might have a plateau, a bump or a sharp de-
crease in the e�ective temperature as a function of proper
time, we uncovered surprising regularities in the behav-
ior of total produced entropy and e�ective temperature
at thermalization as functions of initial entropy (all mea-
sured in units of e�ective temperature at � = 0). An
interesting curiosity is that despite describing an expand-
ing medium, the e�ective temperature at thermalization
might be higher than the initial one for initial states
with su⌅ciently big entropy. For initial states with small
entropy, the energy density at thermalization is much
smaller than the one at � = 0, and hence a significant

part of the cooling process is of a nonequillibrium na-
ture. Moreover we observe generically a sizable pressure
anisotropy at thermalization, which is nevertheless en-
tirely understood in terms of dissipative hydrodynamics.
An e�ective thermalization time wth = Tth�th, i.e. ther-
malization time measured in units of e�ective tempera-
ture at thermalization depends on the initial state, but
not strongly, and is between 0.52 and 0.67 for all 20 ini-
tial states that we considered. Finally, let us note that we
could associate with all these initial data, an initial en-
tropy already at � = 0 due to the presence of a dynamical
horizon. This observation shows that thermalization and
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not neccessarily associated with the sudden appearance
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Although initial far-from-equilibrium state is specified by infinitely many numbers 
(infinite number of derivatives of energy density at        ), its energy density and 
non-equilibrium entropy seem to be the main characteristics determining crude 
features of thermalization!

!!!�th ⇡ 0.5fm/c for
TRHIC
th = 350MeV

Tth > Teff (0)

We choose                                       as a criterium for thermalization 

2

solution at the AdS boundary. The details will apear in a
subsequent paper [11], while in the present letter we will
concentrate on the physical questions mentioned above.

Boost-invariant plasma and hydrodynamics. The
traceless and conserved energy-momentum tensor of a
boost-invariant conformal plasma system with no trans-
verse coordinate dependence is uniquely determined in
terms of a single function ⇧T⇤⇤ ⌃ – the energy density at
mid-rapidity ⇤(⇥). The longitudinal and transverse pres-
sure are consequently given by

pL = �⇤� ⇥
d

d⇥
⇤ and pT = ⇤+

1

2
⇥
d

d⇥
⇤ . (1)

It is quite convenient to eliminate explicit dependence
on the number of colors Nc and degrees of freedom by
introducing an e�ective temperature Teff through

⇧T⇤⇤ ⌃ ⇤ ⇤(⇥) ⇤ N2
c · 3

8
�2 · T 4

eff . (2)

Let us emphasize that Teff does not imply in any way
thermalization. It just measures the temperature of a
thermal system with an identical energy density as ⇤(⇥).

All order viscous hydrodynamics amounts to present-
ing the energy-momentum tensor as a series of terms ex-
pressed in terms of flow velocities uµ and their deriva-
tives with coe⌅cients being proportional to appropriate
powers of Teff , the proportionality constants being the
transport coe⌅cients. For the case of N = 4 plasma,
the above mentioned form of Tµ⇥ is not an assumption
but a result of a derivation from AdS/CFT [7]. Hydro-
dynamic equations are just the conservation equations
 µTµ⇥ = 0, which are by construction first-order di�er-
ential equations for Teff .

In the case of boost-invariant conformal plasma this
leads to a universal form of first order dynamical equa-
tions for the scale invariant quantity

w = Teff · ⇥ (3)

namely

⇥

w

d

d⇥
w =

Fhydro(w)

w
, (4)

where Fhydro(w) is completely determined in terms of the
transport coe⌅cients of the theory1. For N = 4 plasma
at strong coupling Fhydro(w)/w is known explicitly up to
terms corresponding to 3rd order hydrodynamics [13]
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This is quite reminiscent of [12] where all-order hydrodynamics

was postulated in terms of linearized AdS dynamics.
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hydrodynamics respectively.

The importance of formula (4) lies in the fact that if the
plasma dynamics would be governed entirely by (even
resummed) hydrodynamics including dissipative terms
of arbitrarily high degree, then on a plot of ⇤

w
d
d⇤w ⇤

F (w)/w as a function of w trajectories for all initial con-
ditions would lie on a single curve given by Fhydro(w)/w.
If, on the other hand, genuine nonequilibrium processes
would intervene we would observe a wide range of curves
which would merge for su⌅ciently large w when thermal-
ization and transition to hydrodynamics would occur.
In Figure 1a we present this plot for 20 trajectories

corresponding to 20 di�erent initial states. It is clear
from the plot that nonhydrodynamic modes are very
important in the initial stage of plasma evolution, yet
for all the sets of initial data, for w > 0.65 the curves
merge into a single curve characteristic of hydrodynam-
ics. In Figure 1b we show a plot of pressure anisotropy
1� 3pL

⌅ ⇤ 12F (w)
w � 8 for a selected profile and compare

this with the corresponding curves for 1st, 2nd and 3rd

order hydrodynamics. We observe on this example, on
the one hand, a perfect agreement with hydrodynamics
for w > 0.63 and, on the other hand, a quite sizeable
pressure anisotropy in that regime which is nevertheless
completely explained by dissipative hydrodynamics.
In order to study the transition to hydrodynamics in

more detail, we will adopt a numerical criterion for ther-
malization which is the deviation of ⇥ d

d⇤w from the 3rd

order hydro expression (5)
�����

⇥ d
d⇤w

F 3rd order
hydro (w)

� 1

����� < 0.005. (6)

Despite the bewildering variety of the nonequilibrium
evolution, we will show below that there exist, however,
some surprising regularities in the dynamics.

Initial and final entropy. Apart from the energy-
momentum tensor components, a very important physi-
cal property of the evolving plasma system is its entropy
density S (per transverse area and unit (spacetime) ra-
pidity). In the general time-dependent case, the precise
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FIG. 2. The dynamical horizon (dashed curve) and a radial
null geodesic (solid black curve) sent from the boundary (left
edge of the plot) at � = 0 into the bulk for a sample pro-
file. This curve coincides with a curve of fixed ‘Eddington-
Finkelstein’ proper time �EF = 0.

holographic dictionary for determining entropy is miss-
ing. Nevertheless in the present case due to high symme-
try, entropy seems to be defined unambiguously in terms
of 1/4GN of the dynamical horizon area element mapped
onto the boundary along ingoing radial null geodesics
[10, 14, 15]. This is also the approach that we take here.

For all of the initial profiles that we considered we ob-
served a dynamical horizon which was pierced by a radial
null geodesic starting from ⇥ = 0 on the boundary (see
Figure 2). This shows that the initial conditions had
always some entropy per unit rapidity to start with.

The main very surprising observation of our work is
that the initial entropy density measured in units of ef-
fective temperature at ⇥ = 0 is a key characterization of
the initial state which, to a large extent, determines the
features of the subsequent transition to hydrodynamics
as well as the final produced entropy. Moreover, we find
a surprisingly simple geometrical characterization of our
initial geometry at ⇥ = 0, which is directly correlated
with the initial entropy. We leave the latter issue to [11].

In the following it is convenient to introduce a dimen-
sionless entropy density s

S · Teff (0)
�2 = N2

c · 1
2
�2 · s. (7)

In order to evaluate the final entropy density at ⇥ = ⌅,
we adopted the following strategy. After observing a pas-
sage to hydrodynamics, we fitted 3rd order hydrodynamic
expression for Teff

Teff =
�

(�⇥)1/3

�
1� 1

6� (�⇥)2/3
+

�1 + log 2

36�2 (�⇥)4/3
+

+
�21 + 2�2 + 51 log 2� 24 log2 2

1944�3 (�⇥)2

⇥
(8)

to obtain the remaining single scale �. Since at ⇥ = ⌅
perfect fluid hydrodynamics applies, we can use the stan-
dard expression for entropy to get sfinal = �2 ·Teff (0)�2.

Once this has been done we can now determine the en-
tropy production sfinal � sinitial as a function of sinitial
for all the considered profiles. Despite the huge di⇥er-
ences in the evolution evident in Figure 1a, we observe
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FIG. 3. Entropy production as a function of initial entropy
for various initial conditions.

a clear functional dependence of the entropy production
on the initial entropy. The results are shown in Figure 3
together with a fit of the form

sfinal � sinitial ⇤ 1.59 · s1.55initial. (9)

Properties of thermalization. We will now proceed
to study in detail the properties of the transition from
far from equilibrium regime to hydrodynamics. We
will adopt the criterion (6), which imposes quite precise
agreement between the equations of motion coming from
third order hydrodynamics (being the most prescise de-
scription currently known) and the actual evolution of
the energy density of the plasma obtained from numeri-
cally solving the full Einstein’s equations. This criterion
is quite di⇥erent from criterions based on isotropization
of the longitudinal and transverse pressures like the one
adopted in [8]. In particular, Figure 1b shows quite a size-
able pressure anisotropy, which is nevertheless entirely
due to hydrodynamic modes.
Using the criterion (6), we determine the thermaliza-

tion times for 20 initial profiles. If we were to modify the
threshold, the thermalization time would of course shift
but in general not in a significant manner. However, it is
fair to say that thermalization is not a clear-cut event but
rather happens in some narrow range of proper times.
With this proviso we will now proceed to analyze the

following features of the thermalization time: (i) the di-
mensionless parameter w = ⇥Teff , (ii) the thermalization
time in units of initial temperature and (iii) the ratio of
the e⇥ective temperature at the time of thermalization
to the initial (e⇥ective) temperature.

In Figure 4, we show a plot of the values of w at the
time of thermalization as a function of the initial en-
tropy. We see that for a wide range of initial entropies,
the values of w at thermalization are approximately con-
stant and decrease only for initial data with very small
entropies.

Subsequently, we found unexpectedly rather clean
curves giving the dependence of the thermalization time
on the initial entropy (see Figure 5). This is very surpris-
ing taking into account the huge qualitative di⇥erences
in the evolution of the plasma when starting from the
various initial conditions.

Another important aspect is the question which part

Below are the plots of various non-equilibrium characteristics of plasma as a 
function of dimensionless entropy density defined by 



Summary

Open directions

14/14

Is there a simple model behind discovered phenomenological relations?

Do similar relations hold for less symmetric (more realistic) dynamics?

What are the properties of thermalization in the presence of transverse dynamics?

AdS/CFT naturally leads to short thermalization times

The most surprising observation is that initial non-equilibrium entropy 
predetermines crude features of boost-invariant thermalization at strong coupling

Holographic system can be very anisotropic                       , but locally thermalized(�� 3pL)/� ⇡ 0.6

Key novelty - scanning through a large (20) set of initial data revealing rich dynamics

Holographic thermalization = bulk black hole equilibration


