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what are the theoretical and observational bounds on gravity in the IR ?

mass of the photon is bounded to m < 10 GeV,
how about the graviton?

Can we construct a consistent theory for
a massive spin-2 field ?
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Why Massive Gravity ?

* Phenomenology

what are the theoretical and observational bounds on gravity in the IR ?

mass of the photon is bounded to m < 10 GeV,

how about the graviton?

* Self-acceleration
Could dark energy be due to an IR modification of gravity?

with no ghosts ...

= C.C. Problem

?

-

Is the cosmological constant small ?
OR

~N

does it have a small effect on the geometry ?

\_

Arkani-Hamed, Dimopoulos, Dvali &Gabadadze, ‘02

Dvali, Hofmann & Khoury, <07
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Massive Gravity » ¢

= A massless spin-2 field in 4d, has 2 dof

= A massive spin-2 field, has 5 dof
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Strong Coupling » &<

= 5t force constraints in the solar system imply that the
extra degrees of freedom must be strongly coupled at a
scale A < Mp;
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Boulware-Deser Ghost

= Non-linearities are fundamental for the survival of the theory.

= But non-linearly, the theory seems to contain a ghost, which
has been shown explicitly

1. Inthe ADM formalism,
counting constraints in Hamiltonian

2. In the Sttckelberg language,
- In the decoupling limit (ghost scale ~ A)
- At higher scales



1. ADM In GR

= The ghost of massive gravity was originally pointed out
by Boulware and Deser, using the ADM decomposition

ds® = —Njdt® + ;5 (dz* + N'dt) (da? + N7dt)

= In GR, both the lapse and shifts play the role of Lagrange
multipliers, propagating 4 constraints



1. ADM In GR

= The ghost of massive gravity was originally pointed out
by Boulware and Deser, using the ADM decomposition

ds® = —Njdt® + ;5 (dz* + N'dt) (da? + N7dt)
= In GR, the lapse and shifts play the role of Lagrange mult.
H = NoR’(v, Py) + N;R'(v, P,)

ﬁ symmetry

6 x2—4—4=4=2x 2 dof in field space
k constraints



1. BD Ghost in ADM

= In massive gravity, both the lapse and shifts enter non-linearly

H = NORO(% Py) + NiRi('}’a Py) + m* U(No, Ni, 7, Py)

= The Fierz-Pauli combination, ensures that the lapse remains
linear at the quadratic order,

Z/{(h) — hiy I h2
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1. BD Ghost in ADM

= In massive gravity, both the lapse and shifts enter non-linearly

H = NORO(% Py) + NiRi('}’a Py) + m* U(No, Ni, 7, Py)

= The Fierz-Pauli combination, ensures that the lapse remains
linear at the quadratic order, but not beyond...

u(h’) — hiu i h’2

MQ—I—(gNhii-l-"'-l-(SNzhii



1. BD Ghost in ADM

= In massive gravity, both the lapse and shifts enter non-linearly

H = NoR°(v, Py) + NiR'(v, Py) + m® U(No, Ny, v, Py)

= There Is no possible mass term for which the lapse remains a
LLagrange multiplier

. 2 3 2 3 4
U(h) = hy, — h* + (ahy, + Bhhy, + k%) + (ohy,, +--+)

D ONhii + 6N? (hi; + his + hi; + N7) + 6Nhg; + 6N* + - -

Boulware & Deser,1972
Creminelli et. al. hep-th/0505147



1. BD Ghost in ADM

= In massive gravity, both the lapse and shifts enter non-linearly

= NORO('}G P’y) =+ NiRi(’}’a P’}’) + m” Z’{(Nf“ N, 7, P’Y)

= There Is no possible mass term for which the lapse remains a
LLagrange multiplier

ry symmetry

6 x 2 X — X = 6 dof propagating non-linearly
k constraints

Boulware & Deser,1972
Creminelli et. al. hep-th/0505147



1. BD Ghost in ADM

= In massive gravity, both the lapse and shifts enter non-linearly

= NORO('}G P’y) =+ NiRi(’}’a P’}f) + m” U(Nf“ N, 7, P’Y)

= There Is no possible mass term for which the lapse remains a
LLagrange multiplier

ry symmetry

6 x 2 X — X = 6 dof propagating non-linearly
k constraints

Boulware & Deser,1972 5+1 dof —)ﬂ ghost ...
Creminelli et. al. hep-th/0505147



1. BD Ghost in ADM

= |n massive gravity, bd

H = NoR°(v, Py) + N;R'(, Py'm2 U(No, N;, 7, P,)

h the lapse and shifts enter non-linearl

Is that really the right criteria ?7?



1. BD Ghost in ADM

« Whether or not there 1Is a constraint,

nl = N[]RO(’}(: P’}’) + N’ER%(’}/? P’Y) + m2 Z/{(NU’ N;, s P’Y)

. . 0°U
simply depends on the Hessian, L, =
P EEP " ONHONY
( )

constraint <— detL =0




Toy Model

As an instructive toy example, we can take

H = NoRo + N'R; —m?\/(1+ No)? — N2

[/
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Toy Model

As an instructive toy example, we can take

[/

A e Y ———

H = NoRo+ N'R; — m\/(1+ No)2 — N?

Despite being non-linear in the lapse, there Is a constraint:

1 — N? (1 4+ No)N;
det L,, = # det =0
J =77

(14 No)N;| —((1 + No)? — N?)d;;




Toy Model

As an instructive toy example, we can take

[/

A e ¥ ————

H = NoRo+ N'R; — m\/(1+ No)2 — N?

We could have simply redefined the shift ,,
to make the constraint transparent: Ni =ni(1+ No)

H = NoRo + (1 + No) (niRi — mz\/l — nf)



Boulware-Deser Ghost

= Non-linearities are fundamental for the survival of the theory.

= But non-linearly, the theory seems to contain a ghost, which
has been shown explicitly

1. Inthe ADM formalism,
counting constraints in Hamiltonian

2. In the Sttckelberg language,
- In the decoupling limit (ghost scale ~ A)
- At higher scales



2. Stuckelberg language

~ To give the graviton a mass, Include the interactions

m2

L = M (R . u(h,ﬂ/))

= Mass for the fluctuations around flat space-time

Juv — Nuv + hm/



2. Stuckelberg language

~ To give the graviton a mass, include the interactions

2
L= MP2>1 (R A U(HMV))

= Mass for the fluctuations around flat space-time
Cba — 70 _ AG g,ull/ — 77@1/ _I_ h’u,l/
b
a_ 0 _ _K Juv — nabauqba va T H,uu

I8 = Wy —F Ay — Oy o) an
— H" ~ (00T)" —>ﬂ ghost ...



2. Stuckelberg language

~ To give the graviton a mass, include the interactions

L = Mg (R

m2

)

= Mass for the fluctuations around flat space-time

(ba:a?a—Aa

@ = g0~ 9 K

H,, =

Juv — Nuv + hm/
Juv — nabauqba qub T H,uy

~

Ry

2

A

T2
Hp,z/ H;w

Mp

2 2 4
Mpim? — Mgmt oo



Decoupling limit

7 & T2
H,, = 2wy o M i
" Mp T Mpm?2  MZm?

= In the decoupling limit, M/p; — oo, m — 0
with A3 = Mpim? fixed,

U(hyy, ™) =U|p,, =0 hyw X* (1) 4 hey, -

The ghost can be avoided in that limit,
if U|p,, —o is atotal derivative



Decoupling limit

~ A 9
H, 6 = Py - 2 Hyuw I
L =
H Mpy Mpim? ]\41:2)1777,4

- z,{\ By =0 IS a total derivative, for instance if
e N\

U = (0,05m)% — (Or)?

\ J




Decoupling limit

A A A2

H,, = 2w 9w -
puy — ' 2 2 4
Mp; Mpim Mgm

~ U|p,,—o isatotal derivative, for instance if
( )

U= K2z - (K2)°

. — 2
= In the decoupling limit, H, |4, = 211, — 1L,




Ghost-free theory

= The mass term

CU(HMV) — ]C’}ﬁ ]CI:L — ]CQ)

with 0,0, 7 = K,

dec

= Has no ghosts in the decoupling limit:

Pt

huv
Mp

U(Hp) ~ ((0,0,m)° — (Or)?) A (907) + - - -

CdR, Gabadadze, Tolley, 1011.1232



Ghost-free decoupling limit

= In the decoupling limit (keeping Ag — Mplm2 fixed)

| P - 1
L= —5h" (Eh) — ¥ (X}j) + A—gX,g%)+ - )
- 1 A A
with Xxgﬂ/) = 0,0, — Unn,,

Xlg?/) ~ (Quavﬁ)Q T



Ghost-free decoupling limit

= In the decoupling limit (keeping Ag — Mplm2 fixed)
1

TUV (O 7 UV 1
L= —5h" (Eh) — ¥ (X;;) — A—gxﬁ) +><>

= The Bianchi identity requires 0" X ,(f,,) =
= The decoupling limit stops at 2"? order.
- Xff,,) are at most 2"d order in derivative

== NO GHOSTS in the decoupling limit



Ghost-free decoupling limit

= In the decoupling limit (keeping Ag — Mplm2 fixed)

1 U 2 NN, 1
= The Bianchi identity requires 0" X ,(f,,) =
= The decoupling limit stops at 2"? order.

- Xp(bzv) are at most 2" order in derivative

= These mixings can be removed by a local field
redefinition
. 1

h’MV = EMV -+ 7/:‘-?7“]/ == —3(%7?8,,7?
AS



Galileon In disguise




Galileon In disguise

= [or a stable theory of massive gravity, the decoupling
limit is

~ The interactions have £ =2 (eh) + (07 (1
3 special features:
1. They are local
2. They possess a Shift T T+ C

and a Galileon symmetry m — 7+ ¢, x"
3. They have a well-defined Cauchy problem
(eom remain 2" order)

+I:I7r+(D7r)2—|—---
A3 A§

= Corresponds to the Galileon family of interactions

- 7 ~ ]' A~ A 1/
COUp“ng to matter (hl“/ + 7”7“1/ + Faﬂﬂ'ay’ﬂ') T
3



A
Galileon In disguise Yz

i
. ,
o T

= [or a stable theory of massive gravity, the decoupling
limit 1s

= The Inter
3 special
1. They:¢

> They The BD ghost can be pushed

beyond the scale A,

3. They
(eom

= Corresponds to the Galileon family of interactions

. . 5 L. 7
Coupling to matter (h,w + T + Faﬂaﬂ) TH
3



Ghost-free theory

= There exist actually a 2-parameter family of theories:

@(HW) = KK, — K2 + a1 (K° = 3K5, K 4+ 2K3,) + ag (K* + - D

with 0,0, m = K, KCH = 51 — /8t — HE

dec

= |_eading to the entire family of ghost-free Galileon
Interactions in the decoupling limit.

CdR, Gabadadze, Tolley, 1011.1232



Ghost-free theory

= There exist actually a 2-parameter family of theories:

@(HW) = KK, — K2 + a1 (K° = 3K5, K 4+ 2K3,) + ag (K* + - D

with 0,0, m = K, KCH = 51 — /8t — HE

dec

= |_eading to the entire family of ghost-free Galileon
Interactions in the decoupling limit.

Is that enough 7?77



Beyond de decoupling limit

Consider a 2d toy-model,
U(H,W) = KV, ]CZ — K Juv — nabauéa Vcbb T Hpﬂ/

for simplicity we work in the LIF,

=V (909° + 190 + 8o + 816') (Do¢® — D10 — Bop' + O11)

Both (bo and ¢1 propagate dynamical equations...

However they are not independent

SU SU There is still
0 1 0 1 — i
(B0¢” +019") 555 + (216" +60¢) 57 = C a constraint |



Back to the BD ghost...

= \We now set unitary gauge, ¢* = z* (= = 0). In ADM split,
ds® = —N?dt? + ;5 (dz* + N*dt) (dz? + N?dt)

with N =1+40N
= The lapse enters quadratically in the Hamiltonian,

1
8

1
N2 — —5N2}

HDNiRi+m2NZ-2[—2—I—5N— :

Does it really mean that the constraint is lost ?

Boulware & Deser,1972
Creminelli et. al. hep-th/0505147



Back to the BD ghost...

. | 1

= The constraint is manifest after integrating over the shift

2

R’i 1 2 4
MO o (1+ SON — O(R} /m )) + (1+ 6N)Ry

= This can be shown
- at least up to 4" order in perturbations
- completely non-linearly in simplified cases
-in 2d
- for conformally flat spatial metric



Summary of BD ghost

We can construct an explicit theory of massive gravity which:

1. Exhibits the Galileon interactions in the decoupling
limit (— has no ghost in the decoupling limit)

2. Propagates a constraint perturbations (does not excite
the 6" BD mode to that order)

at least up to 4™ order in and indicates that the same remains
true to all orders

to all orders for a conformally flat spatial metric

3.  Whether or not the constraint propagates Is yet
unknown. secondary constraint ?

4. Symmetry 77?7
CdR, Gabadadze, Tolley, in progress...



Consequences for Cosmology

1. For late time acceleration



C.C. Problem

4 i T8 (991) +

2

L

1

2

1 wv (source)
T,



Degravitation

A 1~
L = —ghOh+ Sh* TED (90m) + ok 157
e

Screening the CC k| ‘
>

T}S}s}ource) _ _)\g/ﬂ/

time

~ M35 H?
A~ Mpy T 1/m
eft source
T;Sv ) — _TlSV ) time
Could relax towards a flat H 0

geometry even with a large CC



Dark Energy

1~ - 1 e ~ ‘ |
E — —§h h -+ §hMV W) + §h,u1/ Tﬁsiource)
Screening the CC Self-acceleration
Tllglsjource) _ _)\g/ﬂ/ 4 Tﬂglsjource) — 0
eff source eff
THD = T T~ Al g
Could relax towards a flat Source the late time acceleration

geometry even with a large CC ° H~m



Dark Energy

1~ ~ 1. 1
L= —hOh+ Sh" T,50(00m) + S hH T3
/\
Screening the CC Self-acceleration

= Which branch is possible depends on parameters

= Branches are stable and ghost-free
(unlike self-accelerating branch of DGP)

= In the screening case, solar system
tests involve a max CC to be screened.

CdR, Gabadadze, Heisenberg, Pirtskhalava, 1010.1780
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Consequences for Cosmology

2. Inflation ?



{ ]

EFT and relevant operators , ,<a.

= Higher derivative interactions are essential for the viability
of this class of models.

= Within the solar system, = reaches the scale A.,
yet, we are still within the regime of validity of the theory

GE]??—I—%((Dﬁ)g—l—-'-)—i—%((D:?r):“r-'-)—I—Alg((Dﬁ)4+---) ——@

N (0%7)? D ’r
5 5 I o o o
A'k A*
Vainshtein, Phys. Lett. B 39 (1972) 393 Luty, Porrati, Rattazzi hep-th/0303116

Babichev, Deffayet & Ziour, 0901.0393 Nicolis & Rattazzi, hep-th/0404159
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EFT and relevant operators , ,<a.

= Higher derivative interactions are essential for the viability
of this class of models.

= Within the solar system, = reaches the scale A.,
yet, we are still within the regime of validity of the theory

= The breakdown of the EFT is not measured by “O7” but
by“09” itself ——  gradients should be small

= So we can trust a regime where QO ~ Ai

aslongas QOT K A4

* Luty, Porrati, Rattazzi hep-th/0303116
Nicolis & Rattazzi, hep-th/0404159



®

EFT and relevant operators , ,<a.

Can we use these 1deas to build
a radiatively stable

model of inflation ?
\_ y




Galileon Inflation

= Model of Inflation grounded on the Galileon Symmetry

__1 2 , & 2 3
L=—5(09)" + 15(00)°10 Ao



Galileon Inflation

= Model of Inflation grounded on the Galileon Symmetry

1. 200 -
[ = = 2 H 3 e AS
= Shift symmetry guarantees the conservation of C outside
the horizon — time independent power spectrum

= Non-renormalization theorem allows us to consider these
Interactions to be large, without breaking the regime of
validity of EFT.

Nicolis & Rattazzi, hep-th/0404159



Galileon Inflation

= Model of Inflation grounded on the Galileon Symmetry

1. 200 -
L = Z¢? Hd3 + ... 4 )3
= Shift symmetry guarantees the conservation of C outside
the horizon — time independent power spectrum

= Non-renormalization theorem allows us to consider these
Interactions to be large, without breaking the regime of
validity of EFT.

= Remains true with a mass term



Strong coupling

= When the Interactions are important, 7 —

the inflationary phase satisfies H 2é2

= And perturbations are givenby ¢ — ¢t + £(x, t)

L2 a’ a(?——%( 16)2)

g1&°

E0:) + (0,603

a2




Strong coupling

= When the Interactions are important, 7 —

the inflationary phase satisfies H 2é2

= And perturbations are givenby ¢ — ¢t + £(x, t)

L2 a’ a(?——%( 16)2)

91€° + S3£(9,6)° %(8@5)2@

dim -6 dim -7




Non-Gaussianities

+91€° + ZE(0:€) + 55(8:6)°03¢
| | |
H H H*
fNL ~ E CE_C% ().{_C?:ST

= The operator 7 can be of the same order as the others if the
dim-6 operators are suppressed by additional H/A.

= This suppression Is stable thanks to the Galileon symmetry.

Potentially “large” nG, but with no specific shape.

Burrage, CdR, Seery, Tolley, 1009.2497



New shapes of non-Gaussianity ,

= The situation Is different, if the leading interactions are
tuned to vanish

« Leading interactions then arise from (9°¢)™ terms

= nG can rely on dim-9 operators
specific shapes nG:
- 2 operators lead to ~ equilateral triangles
- 1 to flattened isocele triangle.

Creminelli, d’Amicob, Musso, Norena and Trincherini, 1011.3004



Summary

= Galileon interactions arise naturally
- In braneworlds with induced curvature (soft mass gravity)
- In hard massive gravity with no ghosts in the dec. limit

= The Galileon can play a crucial role in (stable) models of self-
acceleration...

® _..or provide a framework for the study of degravitation

= On different scales, it can provide a radiatively stable
model of inflation leading to potentially large nG...

= ... Similar in spirit than DBI, but with different signatures



