Introduction

Towards Un derstanding Subregion Duality

A Simple Geometrica Criterion

Applications and Comments Reconstructing the Hologram: Towards Subregion Dualities in AdS/CFT

Ariana Stylianidi Christodoulou

University of Amsterdam

University of Crete - April 24th, 2013

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

A Bit About Me

Introductior

Towards Understanding Subregion Duality

A Simple Geometrical Criterion

Applications and Comments Full Name: Maria Ioanna Stylianidi Christodoulou Nationalities: Greek and Cypriot

Previous Education:

2006 - 2009	BSc Physics with Astrophysics, University of Leicester
2009 - 2011	BA Mathematics, University of Cambridge
2011 -	MSc Theoretical Physics, University of Amsterdam

Research Interests: quantum gravity, black holes, the AdS/CFT correspondence

Current Supervisor: Dr. Ben Freivogel

Introduction

Towards Understanding Subregion Duality

A Simple Geometrical Criterion

Applications and Comments

Things we know about AdS/CFT

- All degrees of freedom in the bulk are mapped to degrees of freedom on the boundary
- Given the "whole boundary" we (should) know everything about the bulk
- But what if we have access only to part of the boundary?
- → Is a CFT restricted to a subset of the full AdS boundary dual to a geometric subset of the AdS bulk?

Motivation: Holographic entanglement entropy

Based on R. Bousso et. al. 1209.4641v1

Introduction

Towards Understanding Subregion Duality

A Simple Geometrica Criterion

Applications and Comments Global AdS/CFT: In the classical limit, bulk fields can be reconstructed from CFT one-point functions.

Subregion AdS/CFT: The same must hold if a subregion duality exists.

- Construct continuous maps between data on a subregion of the boundary and the dual bulk fields in the corresponding bulk subregion, in the classical limit.
 - → Non–standard Cauchy problem

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

	Global AdS	YES
When does a continuous map exist?	Poincaré Patch	YES
	AdS–Rindler	NO

Proposed Criterion for Continuous Reconstruction

Statement

Continuous reconstruction of a bulk subregion is only possible if every null geodesic in that subregion reaches the asymptotic boundary of that subregion

Motivation

- Mathematical theorems related to the analogous problem in flat spacetime (Bardos et. al.)
- The physical interpretation of why the reconstruction fails in the case of the Rindler wedge
- Questions about unique continuation of bulk solutions further into the bulk

Introduction

Towards Un derstanding Subregion Duality

A Simple Geometrical Criterion

Applications and Comments

Introductior

Towards Understanding Subregion Duality

A Simple Geometrica Criterion

Applications and Comments The proposed diagnostic criterion can be applied to familiar situations to test its implications:

AdS Black Hole formed in collapse

Every null geodesic reaches the boundary

- \Rightarrow Continuous reconstruction is possible
- Eternal AdS Black Hole

Some null geodesics go from the past singularity to the future singularity and never reach the boundary

 \Rightarrow Continuous reconstruction possible only down to the unstable circular orbit

Black Branes

For every value of r there are null geodesics that never reach the boundary

⇒ No continuous reconstruction

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Introduction

Towards Understanding Subregion Duality

A Simple Geometrica Criterion

Applications and Comments Does the failure of the diagnostic test imply the death of a AdS–Rindler subregion duality?

No: Non–local operators might play a role in bulk reconstruction even at the classical level

Thank you for listening