# Holographic Thermalization

#### Joris Vanhoof

Vrije Universiteit Brussel and International Solvay Institutes



based on: hep-th/1212.6066, hep-th/1303.7342

| Motivation | Equilibrium states | Thermalization process | Probes of thermalization | Results |
|------------|--------------------|------------------------|--------------------------|---------|
| Motivati   | on                 |                        |                          |         |

- Heavy ion collision  $\rightarrow$  formation of Quark-Gluon Plasma
- After fast thermalisation  $\rightarrow$  described by hydrodynamics
- We want to understand thermalization process itself



| Motivation | Equilibrium states | Thermalization process | Probes of thermalization | Results |
|------------|--------------------|------------------------|--------------------------|---------|
| Motivati   | on                 |                        |                          |         |

- Heavy ion collision  $\rightarrow$  formation of Quark-Gluon Plasma
- After fast thermalisation  $\rightarrow$  described by hydrodynamics
- We want to understand thermalization process itself
- Problems:
  - Strongly coupled dynamics
  - Non-equilibrium dynamics
- Goal: Understanding thermalization process using AdS/CFT correspondence
  - Weak/strong correspondence
  - How to implement non-equilibrium dynamics?

#### empty $AdS_{d+1}$ spacetime $\iff$ CFT at zero temperature



・ロン ・四 と ・ ヨ と ・ ヨ と

### Equilibrium states

#### black hole in $AdS_{d+1}$ spacetime $\iff$ CFT at nonzero temperature



## Thermalization process





## Thermalization process

Vaidya spacetime:

$$ds^{2} = \frac{1}{z^{2}} \left( -(1 - m(v)z^{d})dv^{2} - 2dzdv + d\vec{x}^{2} \right)$$

• Thin shell: 
$$m(v) = \theta(v)R^d$$

• Below shell (
$$v < 0$$
):  $dt = dv + dz$   
 $\hookrightarrow$  pure  $AdS_{d+1}$ 

• Above shell 
$$(v > 0)$$
:  $dt = dv + \frac{dz}{1 - R^d z^d}$   
 $\hookrightarrow$  black hole  $AdS_{d+1}$ 



 $\Xi \rightarrow$ 

個 と く ヨ と く ヨ と

# Probes of thermalization

- Two-point functions
  - $\rightarrow~$  (Time-dependent) spectral function
  - $\rightarrow$  (Time-dependent) temperature
- Spacelike Wilson loops
- Entanglement entropy
  - $\rightarrow~$  Mutual information
  - $\rightarrow$  Tripartite information

| Motivation | Equilibrium states | Thermalization process | Probes of thermalization | Results |
|------------|--------------------|------------------------|--------------------------|---------|
| Results    |                    |                        |                          |         |

• (Time-dependent) spectral function:  $(d = 2, R_1 = 0.5, R_2 = 1, \Delta = 2.25)$ 



イロン イヨン イヨン イヨン

3

| Motivation | Equilibrium states | Thermalization process | Probes of thermalization | Results |
|------------|--------------------|------------------------|--------------------------|---------|
| Results    |                    |                        |                          |         |

• (Time-dependent) temperature:  $(d = 2, R_1 = 0.5, R_2 = 1)$ 



イロト イヨト イヨト イヨト

・ロン ・回 と ・ ヨン ・ ヨン

크

# Thank you for your attention!

Joris Vanhoof Holographic Thermalization