SOR

3

Renormalization Group Scaling of Higgs Operators

Kai A. Roehrig

University of OXFORD (w/ U. Haisch) Johannes Gutenberg University MAINZ (w/ M. Neubert)

Crete - April 2013

Motivation	1-loop calculation	Higgs LET	Outlook
Motivation			

- We are trying to capture the effects of BSM physics by introducing higher dimensional operators. These would come from integrating out objects with masses $M_{BSM} \ge \Lambda_{weak}$.
- Recent measurements from LHC suggest excess in $h \rightarrow \gamma \gamma$ channel of 1.8 ± 0.3 (ATLAS¹) and 1.56 ± 0.43 (CMS²)

- Explicit perturbative expansion (1-loop) & RG-flow
- Higgs Low Energy Theorem

• Consistency checks w/ EW Precision Data

¹ATLAS Collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012)

Motivation	1-loop calculation	Higgs LET	Outlook
Motivation			

- We are trying to capture the effects of BSM physics by introducing higher dimensional operators. These would come from integrating out objects with masses $M_{BSM} \ge \Lambda_{weak}$.
- Recent measurements from LHC suggest excess in $h \rightarrow \gamma \gamma$ channel of 1.8 ± 0.3 (ATLAS¹) and 1.56 ± 0.43 (CMS²)

- Explicit perturbative expansion (1-loop) & RG-flow
- Higgs Low Energy Theorem

Consistency checks w/ EW Precision Data

 $^{^1}$ ATLAS Collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012)

²CMS Collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (2012). $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Motivation	1-loop calculation	Higgs LET	Outlook
Motivation			

- We are trying to capture the effects of BSM physics by introducing higher dimensional operators. These would come from integrating out objects with masses $M_{BSM} \ge \Lambda_{weak}$.
- Recent measurements from LHC suggest excess in $h \rightarrow \gamma \gamma$ channel of 1.8 ± 0.3 (ATLAS¹) and 1.56 ± 0.43 (CMS²)

- Explicit perturbative expansion (1-loop) & RG-flow
- Higgs Low Energy Theorem

• Consistency checks w/ EW Precision Data

 $^{^1}$ ATLAS Collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012)

²CMS Collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (2012). $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Motivation	1–loop calculation	Higgs LET	Outlook
Motivation			

- We are trying to capture the effects of BSM physics by introducing higher dimensional operators. These would come from integrating out objects with masses $M_{BSM} \ge \Lambda_{weak}$.
- Recent measurements from LHC suggest excess in $h \rightarrow \gamma \gamma$ channel of 1.8 ± 0.3 (ATLAS¹) and 1.56 ± 0.43 (CMS²)

- Explicit perturbative expansion (1-loop) & RG-flow
- Higgs Low Energy Theorem

Consistency checks w/ EW Precision Data

Sac

 $^{^{1}}$ ATLAS Collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012)

²CMS Collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (2012). $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Outlook

The Operatorbasis

• 59 independent operators of dimension six ("on shell")

• Focus on subset of eight phenomenologically most relevant $-\mathcal{L}^{(6)} = c_{GG}\mathcal{O}_{GG} + c_{WW}\mathcal{O}_{WW} + c_{BB}\mathcal{O}_{BB} + c_{WB}\mathcal{O}_{WB} + c_{GG}\tilde{\mathcal{O}}_{GG} + c_{WW}\tilde{\mathcal{O}}_{WW} + c_{BB}\tilde{\mathcal{O}}_{BB} + c_{WB}\tilde{\mathcal{O}}_{WB}$

with $c_i = c_i(\mu)$

Outlook

The Operatorbasis

- 59 independent operators of dimension six ("on shell")
- Focus on subset of eight phenomenologically most relevant

$$-\mathcal{L}^{(6)} = c_{GG}\mathcal{O}_{GG} + c_{WW}\mathcal{O}_{WW} + c_{BB}\mathcal{O}_{BB} + c_{WB}\mathcal{O}_{WB} + c_{GG}\tilde{\mathcal{O}}_{GG} + c_{WW}\tilde{\mathcal{O}}_{WW} + c_{BB}\tilde{\mathcal{O}}_{BB} + c_{WB}\tilde{\mathcal{O}}_{WB}$$

with $c_i = c_i(\mu)$

・ロト ・回ト ・ヨト ・ヨト

Э

Outlook

590

The Operatorbasis

$$\mathcal{O}_{GG} = \frac{g_3^2}{2\Lambda} H^{\dagger} H G^a_{\mu\nu} G^{\mu\nu}_a$$
$$\mathcal{O}_{WW} = \frac{g_2^2}{2\Lambda} H^{\dagger} H W^a_{\mu\nu} W^{\mu\nu}_a$$
$$\mathcal{O}_{BB} = \frac{g_1^2}{2\Lambda} H^{\dagger} H B_{\mu\nu} B^{\mu\nu}$$
$$\mathcal{O}_{WB} = \frac{g_1 g_2}{2\Lambda} H^{\dagger} \sigma^a H B_{\mu\nu} W^{\mu\nu}_a$$

$$\begin{split} \tilde{\mathcal{O}}_{GG} &= \frac{g_3^2}{2\Lambda} H^{\dagger} H \, G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a \\ \tilde{\mathcal{O}}_{WW} &= \frac{g_2^2}{2\Lambda} H^{\dagger} H \, W^a_{\mu\nu} \tilde{W}^{\mu\nu}_a \\ \tilde{\mathcal{O}}_{BB} &= \frac{g_1^2}{2\Lambda} H^{\dagger} H \, B_{\mu\nu} \tilde{B}^{\mu\nu} \\ \tilde{\mathcal{O}}_{WB} &= \frac{g_1 g_2}{2\Lambda} H^{\dagger} \sigma^a H \, B_{\mu\nu} \tilde{W}^{\mu\nu}_a \end{split}$$

<□> <@> < E> < E> < E</p>

Outlook

Renormalization Group Equation

Kai A. Roehrig Renormalization Group Scaling of Higgs Operators

・ロト ・ 同ト ・ ヨト ・ ヨト

Outlook

Renormalization Group Equation

Kai A. Roehrig Renormalization Group Scaling of Higgs Operators

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Outlook

Renormalization Group Equation

Kai A. Roehrig Renormalization Group Scaling of Higgs Operators

Outlook

Higgs Low Energy Theorem

$$\mathcal{L}_{h \to gg}^{\text{eff}} = \frac{\alpha_s}{12\pi} \, G^a_{\mu\nu} G^{a\mu\nu} \, \frac{h}{v} \; .$$

To be expected since the higgs is electrically and colour neutral and this is the lowest order coupling that is gauge-invariant.

A (10) A (10)

Outlook

Higgs Low Energy Theorem

$$\mathcal{L}_{h \to gg}^{\text{eff}} = \frac{\alpha_s}{12\pi} \, G^a_{\mu\nu} G^{a\mu\nu} \, \frac{h}{v}$$

To be expected since the higgs is electrically and colour neutral and this is the lowest order coupling that is gauge–invariant.

- Obtain numerical results
- Understand relation to Higgs Low Energy Theorem
- Impact on Peskin–Takeuchi–Parameter S

・ロン ・四 と ・ ヨ と ・ ヨ と

3

Sar

- Obtain numerical results
- Understand relation to Higgs Low Energy Theorem
- Impact on Peskin–Takeuchi–Parameter S

・ロン ・四 と ・ ヨ と ・ ヨ と

3

Sar

- Obtain numerical results
- Understand relation to Higgs Low Energy Theorem
- Impact on Peskin–Takeuchi–Parameter S

- Obtain numerical results
- Understand relation to Higgs Low Energy Theorem
- Impact on Peskin–Takeuchi–Parameter S

(ロ) (同) (E) (E) (E)

- Obtain numerical results
- Understand relation to Higgs Low Energy Theorem
- Impact on Peskin–Takeuchi–Parameter S

(ロ) (同) (E) (E) (E)

Outlook

References & Sources

- C. Grojean, E Jenkins, A. Manohar, M. Trott (hep-ph/1301.2588)
- ATLAS Collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012)
- Own work in progress

- 4 同 ト 4 ヨ ト - 4 ヨ ト

Thank you for your attention

・ロン ・回 と ・ ヨン ・ ヨン

Э