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Non-relativistic limit as group embedding

Starting point: conformal relativistic equation,
e.g. massless KG in d flat dimensions: ∂2Φ̃ = 0

↓ compactify xd+1, pick one Kaluza-Klein mode ∂d+1 ∼ im[
−2 (∂0+im)√

2
(∂0−im)√

2
+ ∂i∂i

]
Φ = 0

↓ non-relativistic limit: Φ ≡ e−imtφ, mφ� i∂0φ

e−imt
[
−2 (∂0)√

2
(−2im)√

2
+ ∂i∂i

]
φ = 0

−→ free Schrödinger equation in (d − 1) dimensions
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• Schrödinger algebra Schr(d − 1) ⊂ Conformal(d) as the
subalgebra that commutes with −iP− =: −i

√
2M

• non-relativistic Hamiltonian H: P+ =: (1/
√

2)H

Remarks:
• the same embedding goes through for spinors:

massless Dirac eqn. in d → Levy-Leblond eqn. in (d − 1)

• procedure does in general not break SUSY (checked for
free hypermultiplet)

→ (Super-Schrödinger in d − 1) ⊂ (Superconformal in d)
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In a holographic context

• Add matter such that AdSd+1 (→isommetries span
conformal group in d dimensions) is deformed to
Schrödinger spacetime (→ isommetry group broken to
subgroup Schr(d − 1)):

ds2 =
−2 (dx−)

2

r2z +
−2dx+dx− + dx idx i + dr2

r2

[Son 2008, Balasubramanian & McGreevy 2008]
• Difficult to find a supergravity solution with

• z = 2→ full Schrödinger symmetry
• non-relativistic spacetime dimension (d − 1) > 2
• SUSY not completely broken

• Task: Check that the boundary supercurrent is indeed in a
Super-Schrödinger mulitplet:
holographic calculation with gravitino in the Schrödinger
bulk
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Thank you for your attention.


