The conformal bootstrap and higher spin symmetry

Amin A. Nizami DAMTP, University of Cambridge

April 19, 2013

Amin A. Nizami The conformal bootstrap and higher spin symmetry

Outline

Amin A. Nizami The conformal bootstrap and higher spin symmetry

→ E → < E →</p>

< 🗇 🕨

CFT: Motivation and Definition

- Understanding QFT: fixed points of RG flows- special points of enhanced symmetry in the space of field thoeries. Define QFT in the EFT picture as a relevant deformation of a CFT.
- Phase transitions: describe universal features of systems near criticality.
- Holography: can describe quantum theories of gravity (at least in AdS) via AdS/CFT.

CFT: Motivation and Definition

- Understanding QFT: fixed points of RG flows- special points of enhanced symmetry in the space of field thoeries. Define QFT in the EFT picture as a relevant deformation of a CFT.
- Phase transitions: describe universal features of systems near criticality.
- Holography: can describe quantum theories of gravity (at least in AdS) via AdS/CFT.

→ Ξ → < Ξ →</p>

CFT: Motivation and Definition

- Understanding QFT: fixed points of RG flows- special points of enhanced symmetry in the space of field thoeries. Define QFT in the EFT picture as a relevant deformation of a CFT.
- Phase transitions: describe universal features of systems near criticality.
- Holography: can describe quantum theories of gravity (at least in AdS) via AdS/CFT.

★ E ► < E ►</p>

Conformal Symmetry and CFT

- Conformal Group: SO(D, 2) in D spacetime dimensions (D ≥ 3). All fields transform in representations of SO(D, 2). Representation labelled by Cartans of the compact subgroup SO(D) × SO(2) : R and dimension Δ.
- CFT Definition (usual): fields transforming in representation \mathcal{R} and Action (more generally, Path Integral) invariant under this transformation on the field variables.
- Perturbative: about weakly coupled saddle points of the path integral

- Conformal Group: SO(D, 2) in D spacetime dimensions (D ≥ 3). All fields transform in representations of SO(D, 2). Representation labelled by Cartans of the compact subgroup SO(D) × SO(2) : R and dimension Δ.
- CFT Definition (usual): fields transforming in representation \mathcal{R} and Action (more generally, Path Integral) invariant under this transformation on the field variables.
- Perturbative: about weakly coupled saddle points of the path integral

- Conformal Group: SO(D, 2) in D spacetime dimensions (D ≥ 3). All fields transform in representations of SO(D, 2). Representation labelled by Cartans of the compact subgroup SO(D) × SO(2) : R and dimension Δ.
- CFT Definition (usual): fields transforming in representation \mathcal{R} and Action (more generally, Path Integral) invariant under this transformation on the field variables.
- Perturbative: about weakly coupled saddle points of the path integral

- CFT Definition (Non-perturbative): give spectrum of all local primary operators together with the Wilson coefficients [O_Δ, R, c_{ijk}]
- O_Δ: local Primary (K_μO_Δ = 0) operator with scaling dimension Δ; *R*: representation of SO(D) in which O_Δ transforms.
- Operator Product Expansion: $O_i(x)O_j(0) = \sum_k c_{ijk}F(x, \partial_y)O_k(y) |_{y=0}$

• Unitarity $\rightarrow \Delta \geq \Delta_{min}(\mathcal{R})$

- CFT Definition (Non-perturbative): give spectrum of all local primary operators together with the Wilson coefficients [O_Δ, R, c_{ijk}]
- O_Δ: local Primary (K_μO_Δ = 0) operator with scaling dimension Δ; R: representation of SO(D) in which O_Δ transforms.
- Operator Product Expansion: $O_i(x)O_j(0) = \sum_k c_{ijk}F(x, \partial_y)O_k(y)|_{y=0}$

• Unitarity $\rightarrow \Delta \geq \Delta_{min}(\mathcal{R})$

ヘロト ヘアト ヘビト ヘビト

- CFT Definition (Non-perturbative): give spectrum of all local primary operators together with the Wilson coefficients [O_Δ, R, c_{ijk}]
- O_Δ: local Primary (K_µO_Δ = 0) operator with scaling dimension Δ; R: representation of SO(D) in which O_Δ transforms.
- Operator Product Expansion: $O_i(x)O_j(0) = \sum_k c_{ijk}F(x, \partial_y)O_k(y)|_{y=0}$

• Unitarity $\rightarrow \Delta \geq \Delta_{min}(\mathcal{R})$

- CFT Definition (Non-perturbative): give spectrum of all local primary operators together with the Wilson coefficients [O_Δ, R, c_{ijk}]
- O_Δ: local Primary (K_µO_Δ = 0) operator with scaling dimension Δ; R: representation of SO(D) in which O_Δ transforms.
- Operator Product Expansion: $O_i(x)O_j(0) = \sum_k c_{ijk}F(x, \partial_y)O_k(y)|_{y=0}$

• Unitarity
$$\rightarrow \Delta \geq \Delta_{min}(\mathcal{R})$$

- Basic idea of bootstrap: Use general principles like Unitarity, Analyticity, Symmetry to determine physical observables of interest: S matrices (or correlation functions).
- Conformal symmetry is constraining: 2 and 3 point functions of scalar conformal primary operators fixed by conformal invariance:
- $\langle \phi_{\Delta}(x_1)\phi_{\Delta}(x_2)\rangle = \frac{k}{x_{12}^{2\Delta}};$ normalise to set k = 1

•
$$\langle \phi_{\Delta_1}(x_1)\phi_{\Delta_2}(x_2)\phi_{\Delta_3}(x_3) \rangle = \frac{c_{123}}{x_{12}^{2\alpha_{123}}x_{23}^{2\alpha_{231}}x_{31}^{2\alpha_{312}}}$$

with $\alpha_{ijk} = \frac{\Delta_i + \Delta_j - \Delta_k}{2}$

ヘロト ヘアト ヘビト ヘビト

- Basic idea of bootstrap: Use general principles like Unitarity, Analyticity, Symmetry to determine physical observables of interest: S matrices (or correlation functions).
- Conformal symmetry is constraining: 2 and 3 point functions of scalar conformal primary operators fixed by conformal invariance:

•
$$\langle \phi_{\Delta}(x_1)\phi_{\Delta}(x_2)\rangle = \frac{k}{x_{12}^{2\Delta}};$$
 normalise to set $k = 1$
• $\langle \phi_{\Delta_1}(x_1)\phi_{\Delta_2}(x_2)\phi_{\Delta_3}(x_3)\rangle = \frac{c_{123}}{x_{12}^{2\alpha_{123}}x_{23}^{2\alpha_{231}}x_{31}^{2\alpha_{312}}}$
with $\alpha_{ijk} = \frac{\Delta_i + \Delta_j - \Delta_k}{2}$

- Basic idea of bootstrap: Use general principles like Unitarity, Analyticity, Symmetry to determine physical observables of interest: S matrices (or correlation functions).
- Conformal symmetry is constraining: 2 and 3 point functions of scalar conformal primary operators fixed by conformal invariance:

•
$$\langle \phi_{\Delta}(x_1)\phi_{\Delta}(x_2)\rangle = \frac{k}{x_{12}^{2\Delta}};$$
 normalise to set $k = 1$
• $\langle \phi_{\Delta_1}(x_1)\phi_{\Delta_2}(x_2)\phi_{\Delta_3}(x_3)\rangle = \frac{c_{123}}{x_{12}^{2\alpha_{123}}x_{23}^{2\alpha_{231}}x_{31}^{2\alpha_{312}}}$
with $\alpha_{ijk} = \frac{\Delta_i + \Delta_j - \Delta_k}{2}$

- Basic idea of bootstrap: Use general principles like Unitarity, Analyticity, Symmetry to determine physical observables of interest: S matrices (or correlation functions).
- Conformal symmetry is constraining: 2 and 3 point functions of scalar conformal primary operators fixed by conformal invariance:

•
$$\langle \phi_{\Delta}(x_1)\phi_{\Delta}(x_2)\rangle = \frac{k}{x_{12}^{2\Delta}};$$
 normalise to set $k = 1$

•
$$\langle \phi_{\Delta_1}(X_1)\phi_{\Delta_2}(X_2)\phi_{\Delta_3}(X_3) \rangle = \frac{\sigma_{123}}{x_{12}^{2\alpha_{123}}x_{23}^{2\alpha_{2323}}x_{31}^{2\alpha_{312}}}$$

with $\alpha_{ijk} = \frac{\Delta_i + \Delta_j - \Delta_k}{2}$

The Conformal Bootstrap

4-point functions: not fixed but functional form quite constrained.

• $\langle \phi_{\Delta}(x_1)\phi_{\Delta}(x_2)\phi_{\Delta}(x_3)\phi_{\Delta}(x_4)\rangle = \frac{1}{x_{12}^{2\alpha}x_{34}^{2\alpha}}f(u,v)$

•
$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$
 conformal cross – ratio

 Crossing symmetry (OPE associativity): can do OPE contraction of different operators within the correlation function- different ways should give same results. Leads to further constraints on f:

•
$$v^{\Delta}f(u,v) = u^{\Delta}f(v,u)$$

4-point functions: not fixed but functional form quite constrained.

•
$$\langle \phi_{\Delta}(x_1)\phi_{\Delta}(x_2)\phi_{\Delta}(x_3)\phi_{\Delta}(x_4)\rangle = \frac{1}{x_{12}^{2\Delta}x_{34}^{2\Delta}}f(u,v)$$

•
$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}$$
 $v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$ conformal cross – ratios

 Crossing symmetry (OPE associativity): can do OPE contraction of different operators within the correlation function- different ways should give same results. Leads to further constraints on f:

•
$$v^{\Delta}f(u,v) = u^{\Delta}f(v,u)$$

ヘロト 人間 ト ヘヨト ヘヨト

4-point functions: not fixed but functional form quite constrained.

•
$$\langle \phi_{\Delta}(x_1)\phi_{\Delta}(x_2)\phi_{\Delta}(x_3)\phi_{\Delta}(x_4)\rangle = \frac{1}{x_{12}^{2\Delta}x_{34}^{2\Delta}}f(u,v)$$

•
$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$
 conformal cross – ratios

 Crossing symmetry (OPE associativity): can do OPE contraction of different operators within the correlation function- different ways should give same results. Leads to further constraints on f:

•
$$v^{\Delta}f(u,v) = u^{\Delta}f(v,u)$$

4-point functions: not fixed but functional form quite constrained.

•
$$\langle \phi_{\Delta}(x_1)\phi_{\Delta}(x_2)\phi_{\Delta}(x_3)\phi_{\Delta}(x_4)\rangle = \frac{1}{x_{12}^{2\Delta}x_{34}^{2\Delta}}f(u,v)$$

•
$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$
 conformal cross – ratios

 Crossing symmetry (OPE associativity): can do OPE contraction of different operators within the correlation function- different ways should give same results. Leads to further constraints on f:

•
$$v^{\Delta}f(u,v) = u^{\Delta}f(v,u)$$

The Conformal Bootstrap

CFTs with higher spin operators

- 2-point function again completely fixed by conformal symmetry
- $\langle O_{s,\Delta}(1)O_{s,\Delta}(2)\rangle = \frac{\text{unique tensor structure}}{x_{12}^{2\Delta}}$
- 3-point function is determined as a sum of finite number of tensor structures with undetermined constant coefficients
- $\langle O_{s_1,\Delta_1}(1)O_{s_2,\Delta_2}(2)O_{s_3,\Delta_3}(3) \rangle = \frac{\text{finitely many tensor structures}}{x_{12}^{2\alpha_{123}}x_{23}^{2\alpha_{231}}x_{31}^{2\alpha_{312}}}$

The Conformal Bootstrap

CFTs with higher spin operators

- 2-point function again completely fixed by conformal symmetry
- $\langle O_{s,\Delta}(1)O_{s,\Delta}(2)\rangle = \frac{\text{unique tensor structure}}{x_{12}^{2\Delta}}$
- 3-point function is determined as a sum of finite number of tensor structures with undetermined constant coefficients
- $\langle O_{s_1,\Delta_1}(1)O_{s_2,\Delta_2}(2)O_{s_3,\Delta_3}(3) \rangle = \frac{\text{finitely many tensor structures}}{x_{12}^{2\alpha_{123}}x_{23}^{2\alpha_{231}}x_{31}^{2\alpha_{312}}}$

ヘロン 人間 とくほ とくほ とう

1

The Conformal Bootstrap

CFTs with higher spin operators

- 2-point function again completely fixed by conformal symmetry
- $\langle O_{s,\Delta}(1)O_{s,\Delta}(2)\rangle = \frac{\text{unique tensor structure}}{x_{12}^{2\Delta}}$
- 3-point function is determined as a sum of finite number of tensor structures with undetermined constant coefficients
- $\langle O_{s_1,\Delta_1}(1)O_{s_2,\Delta_2}(2)O_{s_3,\Delta_3}(3) \rangle = \frac{\text{finitely many tensor structures}}{x_{12}^{2\alpha_{123}}x_{23}^{2\alpha_{231}}x_{31}^{2\alpha_{312}}}$

The Conformal Bootstrap

CFTs with higher spin operators

- 2-point function again completely fixed by conformal symmetry
- $\langle O_{s,\Delta}(1)O_{s,\Delta}(2)\rangle = rac{\text{unique tensor structure}}{x_{12}^{2\Delta}}$
- 3-point function is determined as a sum of finite number of tensor structures with undetermined constant coefficients

•
$$\langle O_{s_1,\Delta_1}(1)O_{s_2,\Delta_2}(2)O_{s_3,\Delta_3}(3) \rangle = \frac{\text{finitely many tensor structures}}{x_{12}^{2\alpha_{123}}x_{23}^{2\alpha_{231}}x_{31}^{2\alpha_{312}}}$$

Higher Spin Symmetry

- Conformal symmetry is constraining but not enough. Maybe together with some other symmetry it can help us bootstrap.
- Idea: use higher spin symmetry- infinite tower of exactly conserved higher spin currents $\partial_{\mu_1} J^{\mu_1 \mu_2 \dots \mu_s} = 0$
- However, unfortunately, we encounter the Maldacena-Zhiboedov theorem:
- o conformal symmetry + higher spin symmetry= free theory !

- Conformal symmetry is constraining but not enough. Maybe together with some other symmetry it can help us bootstrap.
- Idea: use higher spin symmetry- infinite tower of exactly conserved higher spin currents $\partial_{\mu_1} J^{\mu_1 \mu_2 \dots \mu_s} = 0$
- However, unfortunately, we encounter the Maldacena-Zhiboedov theorem:
- o conformal symmetry + higher spin symmetry= free theory !

- Conformal symmetry is constraining but not enough. Maybe together with some other symmetry it can help us bootstrap.
- Idea: use higher spin symmetry- infinite tower of exactly conserved higher spin currents $\partial_{\mu_1} J^{\mu_1 \mu_2 \dots \mu_s} = 0$
- However, unfortunately, we encounter the Maldacena-Zhiboedov theorem:
- conformal symmetry + higher spin symmetry= free theory !

- Conformal symmetry is constraining but not enough. Maybe together with some other symmetry it can help us bootstrap.
- Idea: use higher spin symmetry- infinite tower of exactly conserved higher spin currents $\partial_{\mu_1} J^{\mu_1 \mu_2 \dots \mu_s} = 0$
- However, unfortunately, we encounter the Maldacena-Zhiboedov theorem:
- o conformal symmetry + higher spin symmetry= free theory !

(4回) (1日) (日)

Higher Spin Symmetry

- Possible way out: use broken (in a special way) higher spin symmetry. This is still quite constraining. H.S. Symmetry broken by finite N effects in a large N CFT
- Example: 3d CS gauge theory coupled to fundamental matter (boson or fermion)
- We get anomalous "conservation"eqs.

•
$$\partial J_s = \frac{1}{N} J_{s_1} J_{s_2} + \frac{1}{N^2} J_{s_1} J_{s_2} J_{s_3}$$

ヘロト ヘアト ヘビト ヘビト

Higher Spin Symmetry

- Possible way out: use broken (in a special way) higher spin symmetry. This is still quite constraining. H.S. Symmetry broken by finite N effects in a large N CFT
- Example: 3d CS gauge theory coupled to fundamental matter (boson or fermion)
- We get anomalous "conservation"eqs.
- $\partial.J_s = \frac{1}{N}J_{s_1}J_{s_2} + \frac{1}{N^2}J_{s_1}J_{s_2}J_{s_3}$

Higher Spin Symmetry

- Possible way out: use broken (in a special way) higher spin symmetry. This is still quite constraining. H.S. Symmetry broken by finite N effects in a large N CFT
- Example: 3d CS gauge theory coupled to fundamental matter (boson or fermion)
- We get anomalous "conservation"eqs.
- $\partial.J_s = \frac{1}{N}J_{s_1}J_{s_2} + \frac{1}{N^2}J_{s_1}J_{s_2}J_{s_3}$

- Possible way out: use broken (in a special way) higher spin symmetry. This is still quite constraining. H.S. Symmetry broken by finite N effects in a large N CFT
- Example: 3d CS gauge theory coupled to fundamental matter (boson or fermion)
- We get anomalous "conservation"eqs.

•
$$\partial J_s = \frac{1}{N} J_{s_1} J_{s_2} + \frac{1}{N^2} J_{s_1} J_{s_2} J_{s_3}$$

Large *N* solution for N-point functions in such a theory (schematic)

- $\partial . \langle J_{s_1} J_{s_2} J_{s_3} \rangle = \frac{1}{N} \langle J_s J_{s'} J_{s_2} J_{s_3} \rangle + O(1/N^2)$
- Use large N factorisation
- $\frac{1}{N}\langle J_s J_{s'} \rangle \langle J_{s_2} J_{s_3} \rangle + perm. + O(1/N^2)$
- So leading order (to 1/*N*) expression for the 3-point function is the solution of the above simple diff. eq. Schematically
- $\langle J_{s_1}J_{s_2}J_{s_3}\rangle = \langle J_{s_1}J_{s_2}J_{s_3}\rangle_{N=\infty} + \frac{1}{N}\int \langle J_sJ_{s'}\rangle \langle J_{s_2}J_{s_3}\rangle + perm.$

Large *N* solution for N-point functions in such a theory (schematic)

- $\partial . \langle J_{s_1} J_{s_2} J_{s_3} \rangle = \frac{1}{N} \langle J_s J_{s'} J_{s_2} J_{s_3} \rangle + O(1/N^2)$
- Use large N factorisation
- $\frac{1}{N}\langle J_s J_{s'} \rangle \langle J_{s_2} J_{s_3} \rangle + perm. + O(1/N^2)$
- So leading order (to 1/*N*) expression for the 3-point function is the solution of the above simple diff. eq. Schematically
- $\langle J_{s_1}J_{s_2}J_{s_3}\rangle = \langle J_{s_1}J_{s_2}J_{s_3}\rangle_{N=\infty} + \frac{1}{N}\int \langle J_sJ_{s'}\rangle \langle J_{s_2}J_{s_3}\rangle + perm.$

Large *N* solution for N-point functions in such a theory (schematic)

- $\partial . \langle J_{s_1} J_{s_2} J_{s_3} \rangle = \frac{1}{N} \langle J_s J_{s'} J_{s_2} J_{s_3} \rangle + O(1/N^2)$
- Use large N factorisation
- $\frac{1}{N}\langle J_s J_{s'} \rangle \langle J_{s_2} J_{s_3} \rangle + perm. + O(1/N^2)$
- So leading order (to 1/*N*) expression for the 3-point function is the solution of the above simple diff. eq. Schematically
- $\langle J_{s_1}J_{s_2}J_{s_3}\rangle = \langle J_{s_1}J_{s_2}J_{s_3}\rangle_{N=\infty} + \frac{1}{N}\int \langle J_sJ_{s'}\rangle \langle J_{s_2}J_{s_3}\rangle + perm.$

Large *N* solution for N-point functions in such a theory (schematic)

- $\partial . \langle J_{s_1} J_{s_2} J_{s_3} \rangle = \frac{1}{N} \langle J_s J_{s'} J_{s_2} J_{s_3} \rangle + O(1/N^2)$
- Use large N factorisation
- $\frac{1}{N}\langle J_s J_{s'} \rangle \langle J_{s_2} J_{s_3} \rangle + perm. + O(1/N^2)$
- So leading order (to 1/*N*) expression for the 3-point function is the solution of the above simple diff. eq. Schematically
- $\langle J_{s_1}J_{s_2}J_{s_3}\rangle = \langle J_{s_1}J_{s_2}J_{s_3}\rangle_{N=\infty} + \frac{1}{N}\int \langle J_sJ_{s'}\rangle \langle J_{s_2}J_{s_3}\rangle + perm.$

イロン 不良 とくほう 不良 とうほ

Large *N* solution for N-point functions in such a theory (schematic)

- $\partial . \langle J_{s_1} J_{s_2} J_{s_3} \rangle = \frac{1}{N} \langle J_s J_{s'} J_{s_2} J_{s_3} \rangle + O(1/N^2)$
- Use large N factorisation
- $\frac{1}{N}\langle J_s J_{s'} \rangle \langle J_{s_2} J_{s_3} \rangle + perm. + O(1/N^2)$
- So leading order (to 1/*N*) expression for the 3-point function is the solution of the above simple diff. eq. Schematically

•
$$\langle J_{s_1}J_{s_2}J_{s_3}\rangle = \langle J_{s_1}J_{s_2}J_{s_3}\rangle_{N=\infty} + \frac{1}{N}\int \langle J_sJ_{s'}\rangle \langle J_{s_2}J_{s_3}\rangle + perm.$$

ヘロン 人間 とくほ とくほ とう