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CFT: Motivation and Definition

Understanding QFT: fixed points of RG flows- special
points of enhanced symmetry in the space of field thoeries.
Define QFT in the EFT picture as a relevant deformation of
a CFT.
Phase transitions: describe universal features of systems
near criticality.
Holography: can describe quantum theories of gravity (at
least in AdS) via AdS/CFT.
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Conformal Symmetry and CFT

Conformal Group: SO(D,2) in D spacetime dimensions
(D ≥ 3). All fields transform in representations of SO(D,2).
Representation labelled by Cartans of the compact
subgroup SO(D)× SO(2) : R and dimension ∆.
CFT Definition (usual): fields transforming in
representation R and Action (more generally, Path Integral)
invariant under this transformation on the field variables.
Perturbative: about weakly coupled saddle points of the
path integral

Amin A. Nizami The conformal bootstrap and higher spin symmetry



CFT: Motivation and Definition
The Conformal Bootstrap

Higher Spin Symmetry

Conformal Symmetry and CFT

Conformal Group: SO(D,2) in D spacetime dimensions
(D ≥ 3). All fields transform in representations of SO(D,2).
Representation labelled by Cartans of the compact
subgroup SO(D)× SO(2) : R and dimension ∆.
CFT Definition (usual): fields transforming in
representation R and Action (more generally, Path Integral)
invariant under this transformation on the field variables.
Perturbative: about weakly coupled saddle points of the
path integral

Amin A. Nizami The conformal bootstrap and higher spin symmetry



CFT: Motivation and Definition
The Conformal Bootstrap

Higher Spin Symmetry

Conformal Symmetry and CFT

Conformal Group: SO(D,2) in D spacetime dimensions
(D ≥ 3). All fields transform in representations of SO(D,2).
Representation labelled by Cartans of the compact
subgroup SO(D)× SO(2) : R and dimension ∆.
CFT Definition (usual): fields transforming in
representation R and Action (more generally, Path Integral)
invariant under this transformation on the field variables.
Perturbative: about weakly coupled saddle points of the
path integral

Amin A. Nizami The conformal bootstrap and higher spin symmetry



CFT: Motivation and Definition
The Conformal Bootstrap

Higher Spin Symmetry

Conformal Symmetry and CFT

CFT Definition (Non-perturbative): give spectrum of all
local primary operators together with the Wilson
coefficients [O∆,R, cijk ]
O∆: local Primary (KµO∆ = 0) operator with scaling
dimension ∆; R: representation of SO(D) in which O∆

transforms.
Operator Product Expansion:
Oi(x)Oj(0) =

∑
k cijkF (x , ∂y )Ok (y) |y=0

Unitarity→ ∆ ≥ ∆min(R)
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The Conformal Bootstrap

Basic idea of bootstrap: Use general principles like
Unitarity, Analyticity, Symmetry to determine physical
observables of interest: S matrices (or correlation
functions).
Conformal symmetry is constraining: 2 and 3 point
functions of scalar conformal primary operators fixed by
conformal invariance:
〈φ∆(x1)φ∆(x2)〉 = k

x2∆
12

; normalise to set k = 1

〈φ∆1(x1)φ∆2(x2)φ∆3(x3)〉 = c123

x
2α123
12 x

2α231
23 x

2α312
31

with αijk =
∆i +∆j−∆k

2
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The Conformal Bootstrap

4-point functions: not fixed but functional form quite
constrained.

〈φ∆(x1)φ∆(x2)φ∆(x3)φ∆(x4)〉 = 1
x2∆

12 x2∆
34

f (u, v)

u =
x2

12x2
34

x2
13x2

24
v =

x2
14x2

23
x2

13x2
24

conformal cross − ratios

Crossing symmetry (OPE associativity): can do OPE
contraction of different operators within the correlation
function- different ways should give same results. Leads to
further constraints on f:
v∆f (u, v) = u∆f (v ,u)
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The Conformal Bootstrap

CFTs with higher spin operators
2-point function again completely fixed by conformal
symmetry
〈Os,∆(1)Os,∆(2)〉 = unique tensor structure

x2∆
12

3-point function is determined as a sum of finite number of
tensor structures with undetermined constant coefficients
〈Os1,∆1(1)Os2,∆2(2)Os3,∆3(3)〉 = finitely many tensor structures

x
2α123
12 x

2α231
23 x

2α312
31
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Higher Spin Symmetry

Conformal symmetry is constraining but not enough.
Maybe together with some other symmetry it can help us
bootstrap .
Idea: use higher spin symmetry- infinite tower of exactly
conserved higher spin currents ∂µ1Jµ1µ2....µs = 0
However, unfortunately, we encounter the
Maldacena-Zhiboedov theorem:
conformal symmetry + higher spin symmetry= free theory !
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Higher Spin Symmetry

Possible way out: use broken (in a special way) higher spin
symmetry. This is still quite constraining. H.S. Symmetry
broken by finite N effects in a large N CFT
Example: 3d CS gauge theory coupled to fundamental
matter (boson or fermion)
We get anomalous "conservation"eqs.
∂.Js = 1

N Js1Js2 + 1
N2 Js1Js2Js3
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Large N solution for N-point functions in such a theory
(schematic)

∂.〈Js1Js2Js3〉 = 1
N 〈JsJs′Js2Js3〉+ O(1/N2)

Use large N factorisation
1
N 〈JsJs′〉〈Js2Js3〉+ perm.+ O(1/N2)

So leading order (to 1/N) expression for the 3-point
function is the solution of the above simple diff. eq.
Schematically
〈Js1Js2Js3〉 = 〈Js1Js2Js3〉N=∞ + 1

N

∫
〈JsJs′〉〈Js2Js3〉+ perm.
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