

Three-point functions in $SU(2) \times SU(2)$ sector of ABJM

Presenter: Ara Martirosyan

arXiv:1211.1359

Cowriters: Agnese Bissi Charlotte Kristjansen and Marta Orselli

Tuesday, April 23, 13

Strong/weak coupling

AC		((3.7	TA I
/\/	= 4		Y	11/1
J V			-	111

Strings on $AdS_5 \times S^5$

't Hooft coupling: $\lambda = g_{YM}^2 N$

String tension: $T = \frac{\sqrt{\lambda}}{2\pi}$

Number of colors: N

String coupling: $g_s = \frac{\lambda}{4\pi N}$

Large-N limit: λ – fixed, $N \to \infty$

Free strings: T - fixed, $g_s = 0$

Strong coupling: $N \to \infty$, $\lambda \gg 1$

Classical strings: $g_s = 0, T \gg 1$

Local operators

Strings states

Local gauge invariant operators \longleftrightarrow string states Conformal dimensions, $\Delta \longleftrightarrow$ energies of string states

$$\langle \mathcal{O}(x)\bar{\mathcal{O}}(y)\rangle \sim \frac{1}{|x-y|^{\Delta}}$$

The spectral problem of $\mathcal{N}=4$ SYM: Determine $\Delta=\Delta(\lambda,N)\Leftrightarrow$ Diagonalize dilatation generator D

$$\langle \bar{\mathcal{O}}_{I}(X)\mathcal{O}_{J}(y)\mathcal{O}_{K}(Z)\rangle = \frac{C_{IJK}}{|X - y|^{\Delta_{I} + \Delta_{J} - \Delta_{K}}|y - z|^{\Delta_{J} + \Delta_{K} - \Delta_{I}}|X - z|^{\Delta_{I} + \Delta_{K} - \Delta_{J}}}$$

$$OPE \longrightarrow \mathcal{O}_{I}(x)\mathcal{O}_{J}(y) = \sum_{K} \frac{C_{IJK}}{|x - y|^{\Delta_{I} + \Delta_{J} - \Delta_{K}}} \mathcal{O}_{K}(x)$$

 $C_{I\!J\!K}$ Δ , encode all the dynamics of CFT

$$\langle \mathcal{O}_{1}(x)\mathcal{O}_{2}(y)\rangle = \frac{1}{|x-y|^{2L}} \left(1 - \frac{\lambda}{16\pi^{2}} \ln \Lambda^{2} |x-y|^{2} \sum_{\ell=1}^{L} (C - 2P_{\ell,\ell+1} + K_{\ell,\ell+1}) \right) \times \delta^{j_{1}}{}_{i_{1}} \cdots \delta^{j_{L}}{}_{i_{L}} + \text{cycles.}$$

1-loop Dilatation operator

$$\Gamma_{SU(2)} = \frac{\lambda}{8\pi^2} \sum_{\ell=1}^{L} (1 - P_{\ell,\ell+1}).$$

$$Tr(zzxzxzxzxz) \longrightarrow \bigcirc$$

The Foda approach

Operators of the three-point function are treated as spin chain eigenstates produced by the algebraic Bethe ansatz.

$$a[u_i, z_j] = \frac{(u_i - z_j + \eta)}{(u_i - z_j)}, \quad b[u_i, z_j] = 1 \quad c[u_i, z_j] = \frac{\eta}{(u_i - z_j)}$$

$$M_a(x, \{z\}_L) = \begin{pmatrix} A(x) & B(x) \\ C(x) & D(x) \end{pmatrix}_a$$

$$B-\text{line}$$

$$c_{123}^{(0)} = \mathcal{N}_{123} \sum_{a,b,c} {}_{r} \langle \mathcal{O}_{3_c} | \mathcal{O}_{1_a} \rangle_l {}_{r} \langle \mathcal{O}_{1_a} | \mathcal{O}_{2_b} \rangle_l {}_{r} \langle \mathcal{O}_{2_b} | \mathcal{O}_{3_c} \rangle_l$$

$$_{r}\langle \mathcal{O}_{2}|\mathcal{O}_{3}\rangle_{l}=1$$

$$_{r}\langle \mathcal{O}_{2}|\mathcal{O}_{3}\rangle_{l}=1$$
 $_{r}\langle \mathcal{O}_{2}|\mathcal{O}_{1}\rangle_{l}=_{l}\langle \mathcal{O}_{1}|\mathcal{O}_{2}\rangle_{r}$

$$c_{123}^{(0)} = \mathcal{N}_{123} \sum_{\alpha \cup \bar{\alpha} = \{u\}_{\beta N_1}} {}_r \langle \mathcal{O}_3 | \mathcal{O}_1 \rangle_l \; {}_l \langle \mathcal{O}_2 | \mathcal{O}_1 \rangle_r = \mathcal{N}_{123} \; \left({}_r \langle \mathcal{O}_3 |_l \bigotimes \langle \mathcal{O}_2 | \right) \; | \mathcal{O}_1 \rangle_r \right)$$

2-loop dilatation operator in SU(2)xSU(2)

sector

theory

of N=6 superconformal Chern-Simons
$$\Gamma = \lambda^2 \sum_{l=1}^{2L} (1 - P_{l,l+2}) = \lambda^2 \sum_{l \in odd} (1 - P_{l,l+1}) + \lambda^2 \sum_{l \in even} (1 - P_{l,l+1})$$

two decoupled Heisenberg spin

chains

$$\left(\frac{u_j + i/2}{u_j - i/2}\right)^L = \prod_{k \neq j}^{K_u} \frac{u_j - u_k + i}{u_j - u_k - i}, \qquad \left(\frac{v_j + i/2}{v_j - i/2}\right)^L = \prod_{k \neq j}^{K_v} \frac{v_j - v_k + i}{v_j - v_k - i},$$

two chains being related only through the momentum constraint

$$\Pi_{j=1}^{K_u} \left(\frac{u_j + i/2}{u_j - i/2} \right) \Pi_{k=1}^{K_v} \left(\frac{v_k + i/2}{v_k - i/2} \right) = 1,$$

The scalar sector consists of two complex scalars $N \times \overline{N}$ $U(N) \times U(N)$ rep. of and two complex scalars W_2 $\overline{N} \times N$

Scalars can be grouped into multiplets of of the R-symmetry group SU(4)

$$Z^{a} = (Z_{1}, Z_{2}, \overline{W}_{1}, \overline{W}_{2}) \qquad \overline{Z}_{a} = (\overline{Z}_{1}, \overline{Z}_{2}, W_{1}, W_{2})$$

 $oldsymbol{Z}^a$ transforming in the fundamental representation and

 \overline{Z}_a in the anti-fundamental representation of SU(4)

A gauge invariant single trace operator containing only scalars

$$O = C_{a_1 a_2 ... a_n}^{b_1 b_2 ... b_n} Tr(Z^{a_1} \overline{Z}_{b_1} ... Z^{a_n} \overline{Z}_{b_n})$$

Operator O has an interpretation of a spin chain state of length 2n with the spins in the odd sites transforming in the fundamental representation and spins on the even sites transforming in the anti-fundamental representations of SU(4)

Operator	Vacuum	odd	Excitat	ion	Vacuum	even	Excita	tion
O_1	$(J-J_1)$	Z_1	J_1	Z_2	$(J-J_2)$	W_1	J_2	W_2
O_2	$(J - J_2 + j_1)$	$\overline{W_1}$	$(J_2 - j_2)$	\overline{W}_2	$(J - J_1 + j_1)$	$\overline{Z}_{_{1}}$	$(J_1 - j_2)$	\overline{Z}_{2}
O_3	j_1	Z_1	j_2	$\overline{W}_{\!\scriptscriptstyle 2}$	j_1	W_1	j_2	$\overline{Z}_{\scriptscriptstyle 2}$

Operator	odd	even
O_1	$(Z_1, Z_2, 0, 0)$	$(0,0,W_1,W_2)$
O_2	$(0,0,\overline{W_1},\overline{W_2})$	$(\overline{Z}_1,\overline{Z}_2,0,0)$
O_3	$(Z_1,0,0,\overline{W}_2)$	$(0, \overline{Z}_2, W_1, 0)$

$$O_1 = C_{i_1 i_2 \dots i_J}^{j_1 j_2 \dots j_J} Tr(Z_{i_1} W_{j_1} \dots Z_{i_J} W_{j_J})$$

 O_1

THANK YOU!