Three-point functions in $\mathrm{SU}(2) \times \mathrm{SU}(2)$ sector of ABJM

Presenter: Ara Martirosyan

arXiv:1211.1359
Cowriters: Agnese Bissi Charlotte Kristjansen and Marta Orselli

Strong/weak coupling

$\mathcal{N}=4 \mathrm{SYM}$
't Hooft coupling: $\lambda=g_{Y M}^{2} N$
Number of colors: N
Large-N limit: λ - fixed, $N \rightarrow \infty$
Strong coupling: $N \rightarrow \infty, \lambda \gg 1$
Local operators

Strings on $A d S_{5} \times S^{5}$
String tension: $T=\frac{\sqrt{\lambda}}{2 \pi}$
String coupling: $g_{s}=\frac{\lambda}{4 \pi N}$
Free strings: T - fixed, $g_{s}=0$
Classical strings: $g_{s}=0, T \gg 1$
Strings states

Local gauge invariant operators \longleftrightarrow string states
Conformal dimensions, $\Delta \longleftrightarrow$ energies of string states

$$
\langle\mathcal{O}(x) \overline{\mathcal{O}}(y)\rangle \sim \frac{1}{|x-y|^{\Delta}}
$$

The spectral problem of $\mathcal{N}=4 \mathrm{SYM}$:
Determine $\Delta=\Delta(\lambda, N) \Leftrightarrow$ Diagonalize dilatation generator D

$$
\left\langle\overline{\mathcal{O}}_{l}(x) \mathcal{O}_{J}(y) \mathcal{O}_{K}(z)\right\rangle=\frac{C_{I J K}}{|x-y|^{\Delta_{l}+\Delta_{J}-\Delta_{K}|y-z|^{\Delta_{J}+\Delta_{K}-\Delta_{I}|X-z|^{\Delta_{l}+\Delta_{K}-\Delta_{J}}}} \text {. }}
$$

$\mathrm{OPE} \longrightarrow \mathcal{O}_{I}(x) \mathcal{O}_{J}(y)=\sum_{K} \frac{C_{I J K}}{|x-y|^{\Delta_{I}+\Delta_{J}-\Delta_{K}}} \mathcal{O}_{K}(x)$

$C_{I J K} \Delta, \quad$ encode all the dynamics of CFT

$$
\begin{aligned}
\left\langle\mathcal{O}_{1}(x) \mathcal{O}_{2}(y)\right\rangle & =\frac{1}{|x-y|^{2 L}}\left(1-\frac{\lambda}{16 \pi^{2}} \ln \Lambda^{2}|x-y|^{2} \sum_{\ell=1}^{L}\left(C-2 P_{\ell, \ell+1}+K_{\ell, \ell+1}\right)\right) \\
& \times \delta^{j^{1}}{ }_{i_{1}} \cdots \delta^{j_{L_{i}}}{ }_{i_{L}}+\text { cycles. }
\end{aligned}
$$

1-loop Dilatation operator

$$
\longrightarrow \Gamma_{S U(2)}=\frac{\lambda}{8 \pi^{2}} \sum_{\ell=1}^{L}\left(1-P_{\ell, \ell+1}\right) .
$$

$\operatorname{Tr}(z z x z z x z x z z x z) \longrightarrow$

The Foda approach

Operators of the three-point function are treated as spin chain eigenstates produced by the algebraic Bethe ansatz.

$$
\begin{aligned}
& \mathcal{B}\left(u_{1}\right) \ldots \mathcal{B}\left(u_{N}\right)|\uparrow \ldots \uparrow\rangle \\
& R_{a b}\left(u_{a}, u_{b}\right)=\left(\begin{array}{cccc}
a\left[u_{a}, u_{b}\right] & 0 & 0 & 0 \\
0 & b\left[u_{a}, u_{b}\right] & c\left[u_{a}, u_{b}\right] & 0 \\
0 & c\left[u_{a}, u_{b}\right] & b\left[u_{a}, u_{b}\right] & 0 \\
0 & 0 & 0 & a\left[u_{a}, u_{b}\right]
\end{array}\right)_{a b} \\
& \rightarrow \underset{u_{i}}{\infty}+ \\
& \rightarrow \infty \\
& \rightarrow \rightarrow \rightarrow \\
& \rightarrow \infty \\
& a\left[u_{i}, z_{j}\right]=\frac{\left(u_{i}-z_{j}+\eta\right)}{\left(u_{i}-z_{j}\right)}, \quad b\left[u_{i}, z_{j}\right]=1 \quad c\left[u_{i}, z_{j}\right]=\frac{\eta}{\left(u_{i}-z_{j}\right)} \\
& M_{a}\left(x,\{z\}_{L}\right)=\left(\begin{array}{cc}
A(x) & B(x) \\
C(x) & D(x)
\end{array}\right)_{a} \\
& B \text {-line }
\end{aligned}
$$

$$
\begin{aligned}
& c_{123}^{(0)}=\mathcal{N}_{123} \sum_{a, b, c}{ }_{r}\left\langle\mathcal{O}_{3_{c}} \mid \mathcal{O}_{1_{a}}\right\rangle_{l}\left\langle\mathcal{O}_{1_{a}} \mid \mathcal{O}_{2_{b}}\right\rangle_{l}\left\langle\mathcal{O}_{2_{b}} \mid \mathcal{O}_{3_{c}}\right\rangle_{l} \\
& { }_{r}\left\langle\mathcal{O}_{2} \mid \mathcal{O}_{3}\right\rangle_{l}=1 \quad{ }_{r}\left\langle\mathcal{O}_{2} \mid \mathcal{O}_{1}\right\rangle_{l}={ }_{l}\left\langle\mathcal{O}_{1} \mid \mathcal{O}_{2}\right\rangle_{r} \\
& c_{123}^{(0)}=\mathcal{N}_{123} \sum_{\alpha \cup \bar{\alpha}=\{u\}_{\beta N_{1}}}{ }_{r}\left\langle\mathcal{O}_{3} \mid \mathcal{O}_{1}\right\rangle_{l}{ }_{l}\left\langle\mathcal{O}_{2} \mid \mathcal{O}_{1}\right\rangle_{r}=\mathcal{N}_{123} \quad\left({ }_{r}\left\langle\left.\mathcal{O}_{3}\right|_{l} \bigotimes\left\langle\mathcal{O}_{2}\right|\right)\left|\mathcal{O}_{1}\right\rangle\right.
\end{aligned}
$$

Tuesday, April 23, 13

2-loop dilatation operator in $\operatorname{SU}(2) \times S U(2)$

of $N=6$ superconformal Chern-Simons

$$
\Gamma=\lambda^{2} \sum_{l=1}^{2 L}\left(1-P_{l, l+2}\right)=\lambda^{2} \sum_{l \text { eodd }}^{2 L}\left(1-P_{l, l+1}\right)+\lambda^{2} \sum_{l \text { even }}^{2 L}\left(1-P_{l, l+1}\right)
$$

two decoupled Heisenberg spin chains

$$
\left(\frac{u_{j}+i / 2}{u_{j}-i / 2}\right)^{L}=\Pi_{k \neq j}^{K_{u}} \frac{u_{j}-u_{k}+i}{u_{j}-u_{k}-i}, \quad\left(\frac{v_{j}+i / 2}{v_{j}-i / 2}\right)^{L}=\Pi_{k \neq j}^{K_{v}} \frac{v_{j}-v_{k}+i}{v_{j}-v_{k}-i},
$$

two chains being related only through the momentum constraint

$$
\Pi_{j=1}^{K_{u}}\left(\frac{u_{j}+i / 2}{u_{j}-i / 2}\right) \Pi_{k=1}^{K_{0}}\left(\frac{v_{k}+i / 2}{v_{k}-i / 2}\right)=1,
$$

The scalar sector consists of two complex sçalars $N \times \bar{N}$

Scalars can be grouped into multiplets of of the R-symmetry group SU(4)

$$
Z^{a}=\left(Z_{1}, Z_{2}, \bar{W}_{1}, \bar{W}_{2}\right) \quad \bar{Z}_{a}=\left(\bar{Z}_{1}, \bar{Z}_{2}, W_{1}, W_{2}\right)
$$

Z^{a} transforming in the fundamental representation and
\bar{Z}_{a} in the anti-fundamental representation of SU(4)
A gauge invariant single trace operator containing only scalars

$$
O=C_{a_{1} a_{2} \ldots a_{n}}^{b_{1} b_{2} \ldots b_{n}} \operatorname{Tr}\left(Z^{a_{1}} \bar{Z}_{b_{1}} \ldots Z^{a_{n}} \bar{Z}_{b_{n}}\right)
$$

Operator O has an interpretation of a spin chain state of length $2 n$ with the spins in the odd sites transforming in the fundamental representation and spins on the even sites transforming in the anti-fundamental representations of SU(4)

Operator	Vacuum odd		Excitation		Vacuum even		Excitation	
O_{1}	$\left(J-J_{1}\right)$	Z_{1}	J_{1}	Z_{2}	$\left(J-J_{2}\right)$	W_{1}	J_{2}	W_{2}
O_{2}	$\left(J-J_{2}+j_{1}\right)$	\bar{W}_{1}	$\left(J_{2}-j_{2}\right)$	\bar{W}_{2}	$\left(J-J_{1}+j_{1}\right)$	\bar{Z}_{1}	$\left(J_{1}-j_{2}\right)$	\bar{Z}_{2}
O_{3}	j_{1}	Z_{1}	j_{2}	\bar{W}_{2}	j_{1}	W_{1}	j_{2}	\bar{Z}_{2}

Operator	odd	even
O_{1}	$\left(Z_{1}, Z_{2}, 0,0\right)$	$\left(0,0, W_{1}, W_{2}\right)$
O_{2}	$\left(0,0, \bar{W}_{1}, \bar{W}_{2}\right)$	$\left(\bar{Z}_{1}, \bar{Z}_{2}, 0,0\right)$
O_{3}	$\left(Z_{1}, 0,0, \bar{W}_{2}\right)$	$\left(0, \bar{Z}_{2}, W_{1}, 0\right)$

THANK YOU!

