Higgs decay in two photons

Stefano Marchesani

in collaboration with
Massimo Bianchi & Yassen Stanev

Dipartimento di Fisica
Università di Roma Tor Vergata

University of Crete
April 2013
We want to explain the observed enhancement of the Higgs decay ratio in two photons.
We added at the SM Lagrangian one extra interaction term, involving a new massive vector field Z'_μ:

$$\mathcal{L}_{ZZ'A} = \alpha g^3 \epsilon^{\mu\nu\rho\sigma} Z_\mu Z'_\nu (\partial_\rho A_\sigma - \partial_\sigma A_\rho),$$

such that the diagram contributes to the $H \rightarrow \gamma\gamma$ process.
We added at the SM Lagrangian one extra interaction term, involving a new massive vector field Z'_{μ}:

$$\mathcal{L}_{ZZ'A} = \alpha g^3 \epsilon^{\mu\nu\rho\sigma} Z_{\mu} Z'_{\nu} \left(\partial_{\rho} A_{\sigma} - \partial_{\sigma} A_{\rho} \right),$$

such that the diagram contributes to the $H \rightarrow \gamma\gamma$ process.
Attention: the coupling we added is anomalous and the diagram just written turns out to be UV quadratically divergent. Therefore we think of a microscopic theory with heavy chiral fermions such that the coupling
is given by the diagram once one integrates out the heavy fermions, whose masses are obtained as a result of a certain Higgs mechanism.
The microscopic theory is finite, and so must be the macroscopic theory. Therefore one has to find other effective couplings that are allowed by the microscopic theory and that cancel the divergences in the $H \rightarrow \gamma \gamma$ computation.
The microscopic theory is finite, and so must be the macroscopic theory. Therefore one has to find other effective couplings that are allowed by the microscopic theory and that cancel the divergences in the $H \rightarrow \gamma\gamma$ computation. For instance we have an effective $Z'Z'AA$ vertex.
coming from microscopic diagrams like

\[
\begin{align*}
Z' & \quad A \\
Z' & \quad A
\end{align*}
\]

which add several terms to the effective lagrangian.
coming from microscopic diagrams like

\[\begin{align*}
Z' & \quad A \\
Z' & \quad A \\
H & \quad Z'
\end{align*} \]

which add several terms to the effective lagrangian. In this way diagrams like

\[\begin{align*}
H & \quad Z' \\
Z' & \quad Z' \\
& \quad A
\end{align*} \]

Can compete with the “triangle” diagram and cancel the divergences.