Exact results in $\mathcal{N}=4$ super Yang-Mills and $A d S / C F T$

Blai Garolera and Genís Torrents
 Universitat de Barcelona - ICC

arXiv: 1106.5418 [hep-th], B. Fiol and BG
arXiv: 1202.5292 [hep-th], B. Fiol, BG and A. Lewkowycz
arXiv: 1302.6991 [hep-th], B. Fiol, BG and GT

Erasmus Intensive Programme "Non-perturbative quantum field theory" Crete, April 19, 2013

- Non-perturbative computations are hard!
- Exact results in 4D QFT are extremely hard/impossible...
- The situation improves A LOT with additional symmetries: CFTs, SUSY, ...

$\mathcal{N}=4 \mathrm{SYM}$ is both conformal and maximally supersymmetric!

- Various techniques can apply: Integrability, Localization, AdS/CFT, ...
- We will focus on observables related with external probes of $\mathcal{N}=4 \mathrm{SU}(\mathrm{N}) \mathrm{SYM}$.
(\sim idealization of QCD with two parameters: λ and N)
- First, we will use AdS/CFT to obtain results valid to all orders in λ / N^{2}.
- Then we will use localization results to provide exact expressions, valid for all λ and N.

Fundamental representation $\longleftrightarrow \mathbf{F 1}\left(A d S_{2} \hookrightarrow A d S_{5}\right)$

Consider a particle transforming in the fundamental representation of $S U(N)$. Its dual is a fundamental string, reaching the boundary of AdS at the particle word-line.

Fundamental representation $\longleftrightarrow \mathbf{F} 1\left(A d S_{2} \hookrightarrow A d S_{5}\right)$

Static particle

$$
\langle\mathcal{L}(\vec{x})\rangle=\frac{1}{16 \pi^{2}} \frac{\sqrt{\lambda}}{|\vec{x}|^{4}}
$$

[Danielsson et al., Callan-Güijosa '98]
Accelerated particle $\quad P_{F}=\frac{\sqrt{\lambda}}{2 \pi} a^{\mu} a_{\mu}$
[Mikhailov '03]

Circular WL

$$
\ln \langle W(C)\rangle=\sqrt{\lambda} \quad[\text { Berenstein et al. '98] }
$$

Potential $q \bar{q}$

$$
V_{q \bar{q}}=-\frac{4 \pi^{2}}{\Gamma^{4}\left(\frac{1}{4}\right)} \frac{\sqrt{\lambda}}{L} \quad[\text { Rey-Yee, Maldacena '98] }
$$

Momentum diff. coefficient

$$
\kappa=4 \pi \sqrt{\lambda} T^{3} \quad\left[\text { Xiao, }{ }^{\prime} 08\right]
$$

So far we discussed Strings \Longleftrightarrow Fundamental WL String theory also contains BRANES \Longleftrightarrow Other probes?

D3, k units of electric flux $\longleftrightarrow k$-symmetric rep.

D5, k units of electric flux $\longleftrightarrow k$-antisymmetric rep. [Drukker-Fiol, Hartnoll-Kumar, Yamaguchi, Gomis-Passerini'06]

Range of validity for D3:
SUGRA approx.
$\underbrace{\frac{N^{2}}{\lambda^{2}} \gg \overbrace{k \gg} \frac{N}{\lambda^{3 / 4}}}$
probe approx.

$$
k=1 \text { excluded }
$$

Observable:
F1 Result:

$$
\langle\mathcal{L}(\vec{x})\rangle_{S_{k}}=\frac{\sqrt{\lambda}}{16 \pi^{2}|\vec{x}|^{4}}
$$

Static particle $\quad\langle\mathcal{L}(\vec{x})\rangle_{S_{k}}=\frac{\sqrt{\lambda}}{16 \pi^{2}|\vec{x}|^{4}} \quad \times k \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}}$
Accel. particle $\quad P_{S_{k}}=\frac{\sqrt{\lambda}}{2 \pi} a^{\mu} a_{\mu} \quad \times k \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}}$

$$
P_{S_{k}}=\frac{\sqrt{\lambda}}{2 \pi} a^{\mu} a_{\mu}
$$

Static particle $\quad\langle\mathcal{L}(\vec{x})\rangle_{S_{k}}=\frac{\sqrt{\lambda}}{16 \pi^{2}|\vec{x}|^{4}} \quad \times k \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}}$
D3 Result:

$$
\times k \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}}
$$

Circular WL $\quad \ln \langle W(C)\rangle_{S_{k}}=\sqrt{\lambda} \quad \times \frac{k \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}}}{2}+\underset{\text { [Drukker-Fiol'05] }}{2 N \sinh ^{-1} \frac{k \sqrt{\lambda}}{4 N}}$

Diff. coefficient

$$
\kappa=4 \pi \sqrt{\lambda} T^{3}
$$

[Fiol-BG-GT '13]

All those observables can be computed exactly (to all orders in λ and N) using localization techniques (QFT side).

Surprising result:

String corrections at all $\frac{\lambda}{N^{2}}$ orders \Longleftrightarrow D3 results for $k=1$

OUT OF THE RANGE OF VALIDITY!

- Results of D3 branes carrying $k=1$ units of electric flux match exact results obtained with other techniques (without AdS/CFT)
- This suggests an alternative (and simple!) calculational method.
- Exact results comparable to those of other formalisms (localization, etc.) \Rightarrow Nontrivial AdS/CFT check.
- BUT: We still don’t know why it works!
- Blackfold? Quantum Corrections?
- (Any insight?)

