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We derive 't Hooft ' s  consistency condition on the bound-sta te  spectrum of a confining field 
theory from the principles of analytic S-matrix theory. 

1. Introduction 

In his 1979 Carg~se lectures [1], 't Hoof t  advanced a consistency condition for 
the spectrum of a confining field theory. This paper  gives an argument  for this 
condition based on analyticity and unitarity, that is to say, upon the principles of 
analytic S-matrix theory developed in the 1960's [2]. 

We do not claim to say here either the first or last word on this subject. In his 
original paper,  't Hoof t  gave an argument  for the condition which many physicists 
(including us) find convincing; shortly afterwards, Frishman et al. [3] gave a 
derivation along dispersive lines, which shares common ideas with our work. Also, 
there are several places in our argument  where we have had to make  assumptions 
which we suspect are unnecessary but which we have not been able to eliminate. 
Nevertheless,  we believe we have made a step forward, that our argument  simplifies 
reasoning that was formerly complex and clarifies points that were formerly obscure. 

We begin by stating the consistency condition; this requires some preliminary 
definitions. To keep things as simple as possible, we will restrict ourselves here to 
chromodynamics with color group SU(N) and with n flavors of massless quarks. 
The generalization to more complex theories is straightforward. We represent the 
quarks by Dirac fields ~ar, where a = 1 . . .  n is the flavor index and r = 1 . . .  N is 
the color index. Let  J "  be some colorless flavor current, 

J "  = t~ar'y"[A~-b(1 + Ts) +Aab(1 - ~/5)]¢ ~b" , (1.1) 

where the A ' s  are some hermitian matrices, and the sum on repeated indices is 

* The viewpoint that the anomaly gives rise to a singularity at O 2 = 0 was first discussed in the context 
of perturbat ion theory by Dolgov and Zakharov [3]. 
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implied. This current will be conserved, 

O.J ~" = 0 ,  

if it is free of chromodynamic anomalies, 

(1.2) 

Tr ( A + - A ) = 0 .  (1.3) 

We will restrict ourselves to currents for which this is so. 
Of course, we do not expect the spectrum of the theory to consist of quarks and 

gauge mesons, but rather of colorless particles, hadrons. Let us focus attention on 
the massless spin-½ hadrons; we denote these states (relativistically normalized) by 
[u, p, a) ,  where u is a solution of the massless Dirac equation, p is a null four- 
momentum,  and a labels the hadron. We define matrices B± by 

(u' ,p,o~lY"(O)lu,  p , B ) = a ' 3 / ' [ B + O ( l + . y s ) + B ~ 9 ( 1 - y s ) ] u .  (1.4) 

We can now state the consistency condition. If the symmetry associated with J "  
does not suffer spontaneous breakdown, then 

Tr (B 3 - B  3_) = N T r  (A 3 - A 3 ) .  (1.5) 

(There are also non-trivial results if the symmetry does suffer spontaneous break-  
down, but they have to do with the properties of Goldstone bosons, not of spin-½ 

hadrons.) 
Eq. (1.5) is clearly connected with the anomalous Ward identity first discovered 

by Adler, Bell, and Jackiw [4]. Let us define 

t" 
q3)(2"n')4S(4'(ql + q2 + q3) = J IJ,. d4xi eiq"X'T < 0]J~, (Xl)/u (x2)JA (x3)]0) • (ql, q2, 

(1.6) 

Then 

q~G.x N 
2 T r ( A  3 3 ~ = - -  - A  )e. . ,~¢qaq2. (1.7) 

77" 

We will refer to this as " the anomaly equat ion" and to its right-hand side as " the 
anomaly".  The anomaly equation is known to be true to all orders of perturbat ion 
theory; we will assume here that it is true exactly. In an appendix we give a 
hand-waving argument  that non-perturbat ive effects (e.g., instantons) do not change 
the anomaly. 

(The usual form of the anomaly equation involves three distinct currents, and 
the reader may think we have thrown away valuable information by restricting 
ourselves to three identical currents. This is not so. The part  of the anomaly that 
is not totally symmetric under the interchange of the three currents can always be 
made to vanish by an appropriate  choice of the subtraction constants in the definition 
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Fig. 1. The triangle graph. 
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of the T-product ;  only the totally symmetr ic  par t  is c o n v e n t i o n - i n d e p e n d e n t  and  

only this conta ins  genu ine  dynamica l  informat ion*.)  

Despi te  the fact that  F has non- t r iv ia l  con t r ibu t ions  in all orders of pe r tu rba t ion  

theory,  eq. (1.7) is i n d e p e n d e n t  of the coupl ing;  the anomaly  is given totally by 

the ze ro th -order  cont r ibu t ion ,  the t r iangle graph of fig. 1. This leads to a str iking 
• 1 fo rmula t ion  of the consis tency condi t ion:  If one treats the massless spln-~ hadrons  

as if they were f u n d a m e n t a l  particles, and  if one  ignores all o ther  particles, one 

never theless  correctly computes  the anomaly.  (This is essential ly 't Hoof t ' s  original  

formula t ion . )  

This way of put t ing  things leads to some obvious  quest ions:  

(1) We normal ly  th ink of the anomaly  equa t ion  as tell ing us someth ing  about  

the f u n d a m e n t a l  fields in the theory,  about  its shor t -dis tance  structure• Thus,  

naively,  we would expect it to lead to a sum rule involving cont r ibu t ions  from 

particles of every mass. Why  are only massless particles impor t an t?  

(2) H a d r o n s  are not  e l emen ta ry  particles,  and their  in teract ions  need  not  be 

governed  by the F e y n m a n  rules of a renormal izab le  field theory• How does the 

tr iangle graph en te r  the picture,  and  why is it the only impor t an t  graph? 

(3) Wha t  is special abou t  " spin ~? Why  is there no con t r ibu t ion  from massless 

particles of o ther  spins**? 

* Proof." Let us label the currents by indices a, b, c. In general the anomaly can be of the form 
A abc  abc  ~ IS 

q a 1 ~ t v ; ~  = ~ e ~ I S q l q 2  • 

The only conditions on the numbers a abe given by Bose symmetry is ~7~ abc  ~ ~b bac .  We are always free 
to redefine F by adding a term that vanishes except when the three currents are at the same 
space-time point. In momentum space, this corresponds to adding a polynomial in momenta. Let 
us make the redefinition 

abc  abc  1 r /  a b c  cab  ~ ~ _~ ~ bca _}_ ( c a b  

Note that the added term preserves the full Bose symmetry of F under permutations of the three 
currents. Under this redefinition, 

tT~ abc  -'> ~(~1 abc  4-  ~7~ bca -]- 66 cab  ) , 

This is fully symmetric under permutation of the indices. 
** In fact, as Weinberg and Witten [5] have shown, there are severe restrictions on possible massless- 

particle helicities in chromodynamics. However, we will not need to use their results here. If we 
were to use them, we would simplify our work only slightly; for example, we would still have to 
worry about possible helicity one-helicity zero transition vertices in sect, 4. 
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In the remainder  of this paper,  we shall develop our argument  and answer these 
three questions in the order in which we have posed them. In sect. 2, we shall show 
that the anomaly equation implies a singularity in an invariant amplitude at zero 
momen tum transfer; such a singularity is given exclusively by the contribution of 
massless particles. In sect. 3, we shall review the rules for locating singularities 
in the physical region and the rules for computing the discontinuities at such 
singularities, the Cutkosky rules. The triangle graph will emerge not as a 
Feynman graph but as a generalized unitarity graph. Finally, in sect. 4, we shall 
compute  the residue of the singularity including all spin factors. Our  expression 
will involve kinematic zeros computable  in terms of the helicities of the particles 
going around the triangle. These kinematic zeros will turn out to kill the singularity 
unless the helicities are all equal to +½. In sect. 5, we discuss ways in which our 
arguments might be improved. 

2. Analyticity and the importance of massless hadrons 

F is completely symmetric under simultaneous permutat ions of (qx, q2, q3) and 
(/z, v, A). The restrictions this places on its expansion in terms of invariant amplitudes 
is strongest along the line 

ql 2 =q2  =q3 2 = _ Q 2 .  (2.1) 

We will restrict ourselves to this line here. Among  its other advantages, this policy 
saves us f rom the horrors of the theory of functions of several complex variables. 

The covariants occurring in the expansion of F can be either tensorial or 
pseudotensorial  (i.e., involving the e-symbol). Only the latter can contribute to the 
anomaly,  so we will restrict ourselves to studying these. (In fact, the tensorial 
invariants vanish, but this information is not necessary for our argument.)  At  least 
one of the four indices of the e-symbol must be contracted with a momen tum 
vector. Because the sum of the th ree-momenta  vanishes, there are only two 
independent  vectors in the problem, and at most two of the indices can be contracted 
with momen tum vectors. 

Thus we have only two cases to consider. 
(1) One index is contracted. For example,  

/ ~ v A  2 c~ =F(Q )e,vx,,qa + ' " ,  (2.2) 

where F is some unknown function. However ,  if we symmetrize under cyclic 
permutations,  this becomes 

2 ~ ~ a F(Q )e~,~a,~(qi +q2 +q3 ) = 0 .  (2.3) 

(2) Two indices are contracted. Let  us focus on the terms in which/z and v are 
the uncontracted indices; the others are determined by these through the permuta-  
tion symmetry.  Because there are only two independent  vectors in the problem, 
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there is no choice for which vectors to contract; however, there are two choices 
for which vector carries the remaining index, h. We can choose the two independent 
possibilities to be 

= F ( Q  )eav,~aqlq2 (ql--q2)x + "  " " , (2.4) F~vx 2 a B 

= F ( O  )e ,~aq lq2q3x  +" • " . (2.5) C~vh 2 ~x 

The first of these is odd under simultaneous interchange of (ql, q2) and (/x, u), and 
thus is not acceptable. Fortunately, the second of these can be successfully sym- 
metrized; it is the only allowed pseudotensorial covariant. 

Thus, 

= F ( Q  )[e~,~qaq2q3x F~vh 2 a B 

a B  ~ B  
+ e ~x,~13q2q3ql~ + e x ~ a q 3 q  l q 2 v ]  

+ possible tensors.  (2.6) 

The anomaly equation, eq. (1.7), becomes 

- Q 2 F ( Q 2 )  = ~N 2 Tr (A 3 -A3_).  

That  is to say, F is a simple pole in Q2, with known residue. 
We now see how to reconcile the two faces of the anomaly. The anomaly equation 

gives us the form of F for all Q2. Thus, at one and the same time, it gives us the 
leading asymptotic form of F for large Q2, short-distance behavior, and the leading 
singularity for small Q2, large-distance behavior. To make this last observation 
more precise we will have to study the rules that give us the singularities of Feynman 
amplitudes. 

3. Singularities and the importance of traingles 

For the next stage of our investigation, we need two tools of S-matrix theory, 
the physical-region Landau rules and the Cutkosky rules. These tell us when an 
amplitude has a singularity in the physical region, the region of real external 
momenta,  and how to compute the discontinuity at the singularity. These rules 
were first derived in perturbation theory; however, there are arguments (though 
not rigorous ones) that they should be true independent of perturbation theory. 
We will simply state them here and assume their validity; the reader interested in 
their derivation is referred to the literature [3]. 

The physical-region Landau rules state that a singularity occurs only for those 
external momenta for which one can draw a graph of a process contributing to the 
amplitude such that (1) all internal particles are stable particles on the mass shell, 
(2) all vertices conserve energy and momentum, and (3) the graph can be interpreted 
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Fig. 2. A generalized unitarity graph which gives a singularity of normal-threshold type in two-into-two 
scattering. The two internal lines are bowed apart from each other for clarity in the drawing; as argued 

in the text, in fact they coincide. 

as a drawing of a process going on in space-t ime,  with all internal particles obeying 
the rules of classical kinematics for free motion and moving forward in time. These 
graphs look something like Feynman graphs, but they are not Feynman graphs; 
the first and third conditions are very unlike any for Feynman graphs, and even in 
a renormalizable theory, the vertices may have as many  particles as one wants 
coming together at them. We will call these graphs generalized unitarity graphs. 
(In some formulations of S-matrix theory, these rules are derived from a generaliz- 
ation of the unitarity equation.) 

As an example,  consider the graph for a two-particle scattering process shown 
in fig. 2. (The various particles need not be identical.) We argue that the two 
internal particles must be at rest in the c.m. frame, for if they had non-zero velocities, 
they would move apart  f rom each other from their moment  of production, and 
thus, by classical kinematics, could never join each other at the second vertex. Thus 
the singularity is at the two-particle production threshold. 

The Cutkosky rules state that to determine the discontinuity associated with such 
a graph, we evaluate it as if it were a Feynman graph, except that every internal 
line carries, instead of a Feynman propagator ,  a factor of 2zriO(p°)8(p 2 -  m 2 ) ,  and 
that each vertex is to be replaced by the exact amplitude for the relevant process. 

It is important  to realize that these rules give us the discontinuities of the full 
scattering amplitudes (or Green functions) not of the scalar amplitudes into which 
they are expanded. As we shall see, this can cause difficulties if we are not careful. 

It will be convenient for us to use what are sometimes called light-cone basis 
vectors, 

el =(0,  1, 0 , 0 ) ,  

e2 = (0, 0, 1, 0) ,  (3.1) 

e ,  = ,/}(1, 0, 0, +1) .  

A natural w a y t o  satisfy eq. (2.1) would be to construct the three external momenta  
by taking a triplet of spacelike unit vectors that sum to zero and multiplying them 
by O. For example,  we could choose 

q l  = Q e l ,  

q2 = ~ O ( - e l  + ~/3e2), (3.2) 

q3 = ~ O ( - e l  - ~/3e2) . 
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This choice would be a disaster, though, because 

disc F oc QZS(Q2) = 0.  (3.3) 

This problem is easily circumvented. We choose 

ql = Q e l + e + ,  

q2 = 1 Q ( - e l  + x/3e2), (3.4) 

q 3  = ½O(-ex - 4 3 e 2 ) -  e+. 

Eq. (2.1) is still satisfied, and now 

disc Fcc  O3(O 2) # 0.  (3.5) 

Eq. (3.4) shows that only very special graphs can produce a singularity at Q = 0. 
There is only one vertex at which positive energy is injected into the graph, the ql 
vertex, so this must be the first vertex in space-time. For Q = 0, ql is a null vector, 
so the particles produced at this vertex must be all massless and all collinear. As 
time goes on, these particles may interact with each other at internal vertices of 
the graph, or interact with an external current (carrying zero momentum) at the 
q2 vertex. However,  the total momentum of the system remains null; thus, though 
the particles may change their character, number, and helicity, they must remain 
massless and collinear. Finally, all of the particles must be absorbed at the q3 vertex. 

The simplest graph fitting this description is the triangle graph of fig. 1. Actually, 
as a space-time picture, fig. 1 is badly drawn; the broken line labeled by p3 and 
pl should form a single straight line coincident with the p2 line. We will study this 
graph more closely before going on to other possibilities. 

We know the triangle graph has a singularity in the right place, QZ= 0, but is it 
the right singularity? To get a preliminary idea of what is going on, let us simplify 
the problem by ignoring all tensorial structure and also ignoring all possible 
momentum dependence of the verticles in the graph. The Cutkosky rules would 
then predict a discontinuity proportional to the integral 

S 3 
I = d4pl [I 0 2 O(pr )8(p~ ) .  (3.6) 

r=l 

This integral can be evaluated with no work. By the space-time interpretation of 
the triangle graph, ql must be timelike or null and q2 must be spacelike or null; 
thus the support of the integral must be restricted to Q 2 =  0. By dimensional 
analysis, the integral is a homogeneous function of Q of order minus two. Thus, 

I o c 6 ( O a )  . (3.7) 

This is very close to the desired result, eq. (3.5). As we shall see in sect. 4, the 
vertices are in fact momentum-dependent ,  and this supplies the missing factor of Q. 
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(b) (c) 

Fig. 3. Three generalized unitarity graphs. In all cases, time runs upwards. As in fig. 2, coincident lines 
are separated for clarity. (c) is just the bottom half of (b). 

This kind of argument can be used to discard whole families of graphs. For 
example, fig. 3a also obeys the physical-region Landau rules and could produce a 
singularity at Q a =  0. However,  dimensional analysis here leads to a discontinuity 
that is a homogeneous function of order zero, and there is no such function with 
support restricted to a single point. Of course, we are tacitly assuming here that 
the vertices themselves are free of singularities. We will continue to make this 
assumption throughout the remainder of our argument; we will examine it in more 
detail at the end of the paper. 

Unfortunately, this argument does not eliminate all graphs. For example, 
dimensional analysis applied to fig. 3b leads to a discontinuity of order minus four, 
that is to say, to a double pole in the amplitude. Fortunately, we can show that 
such a singularity is not possible. If there is a double pole in fig. 3b, there is 
correspondingly a double pole in the amplitude for two currents make two mesons, 
fig. 3c. But such a singularity in momentum space would lead to an amplitude in 
position space that grew logarithmically with separation for large separation of the 
currents. This is in contradiction to the general principles of field theory. Thus the 
potential double pole in fig. 3c, and correspondingly in fig. 3b, must be damped 
by momentum factors at the vertices. 

We will now use these ideas to exclude all generalized unitarity graphs other 
than the triangle graph. We begin by giving a more detailed analysis of how the 
integral (3.6) becomes a delta-function. 

The analysis of the integral is complicated by the fact that different components 
of the momenta depend differently on Q. We can take care of this by associating 
with every momentum q a new momentum ~, given by the linear transformation 

= Q - l [ e l ( e l "  q) + e2(e2 • q) + Qe+(e_. q) + Q-le_(e+. q)] .  (3.8) 

(This is the product of a dilatation and a Lorentz transformation.) The transformed 
external momenta are independent of (2: 

q l = e l + e + ,  

~2 = ½(-el + ~/3e2), (3.9) 

q3 = 1 ( - - e l  -- n/3e2) -- e+. 
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Likewise, with the internal momenta ,  the p 's ,  we associate/5's, defined by the same 
transformation.  It  is easy to see that 

d4p  = 0 4 d4/5,  (3.10) 

~(p2)  = 0 - 2 6 ( / 5 2 )  + /5 -2~(02)  . (3.11) 

The origin of the delta-function is now clear. The relevant term in the integration 
must be the first term in eq. (3.11) for two of the delta-functions and the second 
term for one of them. That  is to say, two of the/5 's  must be null and one non-null. 
It is easy to see which is which. At  the ql vertex, the spacelike momen tum c]1 
becomes the sum of two momen ta  both directed forward in time. Thus one of/5 's  
at this vertex must be non-null. Identical reasoning applies to the q3 vertex. Thus 
the non-null momen tum must be/52. 

All of this analysis extends to a general graph*. There are now more  than three 
/5'g, but since we only want one delta-function (because we only want to compute  
the residue of a single pole), only one of them can be non-null. Just as before, 
there must be at least one non-null ,6 emitted at the ql vertex and at least one 
non-null /5 absorbed at the q3 vertex. Thus there must be a single internal line 
(without any interactions along the line) joining these two vertices. This line carries 
a non-null/5; all other/5 's  in the graph are null. 

Now let us consider all the null/~'s emitted at the ql vertex. We argue that these 
must all be parallel. For, if they were not parallel, they would represent  massless 
particles moving in different directions. However ,  by classical kinematics, there 
would be no way for such particles to interact and change their directions of motion 
until they intersect one of the external  currents. Thus, at most we could have two 
streams of particles, one heading towards the q2 vertex and one heading towards 
the q3 vertex. However ,  no null/5 can go from the ql vertex to the q3 vertex, for 
it would then be parallel to the unique non-null/5. Identical reasoning applies to 
the null/5's absorbed at the q3 vertex. 

To summarize,  we have found that the structure of the most general graph that 
contributes to the singularity we are studying is identical to the simple triangle 
graph, fig. 1, with one exception: the lines labeled pl and p3 may represent  not 
single massless particles, but streams of massless particles, moving together, and 
possibly interacting as they move along. 

We can now use reasoning just like that which we used for fig. 3c to restrict the 
singularity associated with these streams. (Just as in the case of fig. 3c, the nice 
thing about this argument  is that we can avoid looking in detail at the interactions 
of the particles as they move along.) If the singularity associated with the s t ream 
is stronger than a single pole, we have unacceptable long-range interactions between 

* For the reader who is made nervous by the following blithe manipulation of singular functions, we 
give an alternative argument for the dominance of the triangle graph in appendix B, based upon a 
blithe manipulation of helicity zeros. 
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widely separa ted  currents. If it is weaker than a single pole, we can discard the 
graph in our analysis. If it is exactly a single pole, we have a single-particle singularity. 

Thus we have reached the desired result: the only graphs that contribute to the 
anomaly are triangle graphs, with massless particles moving around the triangle. 
Now we must look more closely at these particles; in particular, we must study 
their helicities. 

4. Kinematic zeros and the importance of helicity one-half 

Amplitudes for the emission or absorption of massless particles of non-zero 
helicity have kinematic zeros at vanishing particle energy. These are similar to the 
kinematic zeros that appear in ordinary potential scattering of spinless particles. 
Here the partial-wave amplitudes for non-zero angular momentum vanish at thresh- 
old, for the excellent reason that at threshold, where linear momentum vanishes, 
there can be no state of non-zero angular momentum. Likewise, in our case, for 
vanishing momentum there is no sensible definition of helicity, angular momentum 
along the direction of motion. 

In S-matrix theory, there are definite rules for computing these helicity zeros. 
As we did for the Cutkosky rules, we shall simply state the rules here, and refer 
the reader interested in their derivation to the literature [6]. 

There are two sources of kinematic zeros: 
Firstly, for every incoming or outgoing massless particle of energy E and helicity 

h there is a factor of E Ihl. 

Secondly, with every incoming or outgoing massless particle there is associated 
a spinor transforming according to some representation of the homogeneous 
Lorentz group, 0(3 ,  1). The helicity amplitude is multilinear in these spinors. To 
construct a Lorentz-invariant amplitude, it might be necessary to combine the 
spinors with the external momenta.  This can lead to additional factors of E. If we 
label representations of 0(3 ,  1) in the standard way, by two half-integers, the rules 
for associating spinors with particles are these: for every incoming particle of 
positive helicity, and for every outgoing particle of negative helicity, there is a 
spinor that transforms according to the representation (Ihl, 0). For the opposite 
signs of helicity, the spinor transforms according to the representation (0, [hi). 

For the special case of helicity +~, these rules should be familiar from field 
theories of neutrinos. The second rule is just the usual one for associating Weyl 
spinors with neutrinos or anti-neutrinos. The first rule is implicit in the normalization 
condition for these spinors, U*U = 2E. In the general case, the rules simply state 
that a particle of helicity h acts as if it were made of 2h non-interacting aligned 
neutrinos. 

In the triangle graph, these rules are directly applicable to only one of the 
three vertices, the q2 vertex, because only q2 has all of its components small, 
proportional to Q. The other two external momenta,  ql and q3, have some 
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components  of order unity [see eq. (3.4)]. Nevertheless,  they do have small squares, 
q2=  _Q2,  so if we transform to the Breit frame, for example,  all momen ta  will be 
of order Q and we can use our rules. However ,  when we transform back to our 
original frame, we may pick up a factor of Q-1 from the Lorentz transformation.  

Thus, if the amplitude at the qi vertex is proport ional  to E" '  for small energies, 
we want 

n l  + 1'/2 At- n3 = 3.  (4.1) 

This will give us a factor of Q3 for the three vertices, which, when combined with 
a factor of Q-~ for each of the two Lorentz transformations,  will yield the desired 
factor of Q. 

It will be convenient to orient our internal momen tum along the arrows in 
fig. 1 and orient our helicities accordingly. Thus we consider the process at the ql 
vertex as the scattering of a particle of helicity h2 off of a current into a particle 
of helicity ha ,  rather  than as the production of a pair with helicities - h 2  and h3. 

Of course, either way of doing it gives the same power of Q, and by doing things 
this way we can do all three vertices just by cycling around the graph. 

We can obtain an important  constraint on the helicities by transforming to the 
Breit frame, in which the initial particle has m o men tum pointing in the positive z 

direction, and thus J~ = h2, and the final particle has momen tum pointing in the 
negative z direction, and thus Jz = - h 3 .  The current can only transfer Jz = 0, 4-1. 
Hence 

h 2 + h 3  = 0,  4-1 . (4 .2 )  

The solutions to this equation fall into two classes. Either 

o r  

h2h3 <~ O, (4.3a) 

h2 = h3 = 4-1.  (4.3b) 

These need to be analyzed separately. 
For the first class, let us for definiteness assume that h2 I> 0 t> h3. We then have 

a spinor transforming according to (h2, 0) from the incoming particle and one 
transforming according to (]h3], 0) from the outgoing one. We can combine these 
to make a spinor that transforms according to (Ih2+h3], 0); this is either (0, 0) or 
(1, 0). To this we must add one four-vector  [transforming like (½, 1)] to construct a 
current [transforming in the same way]. Thus we obtain one power of O from our 
second rule. If we add this to the powers of O obtained from the first" rule, we find, 

nl = Ih21 + Ih31 + 1, (4.4a) 

where we have written this equation in a form that is clearly also valid for h3/> 0/> h2. 
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For the second class, we have a spinor that transforms according to (½, 0) for one 
particle and one that transforms according to (0, 1) for the other. These combine 
to make (~, ½); thus we need no extra powers of momentum,  and 

n l  = [hz] + [h3] = 1. (4.4b) 

The equations for n2 and n3 are obtained from these by cyclic permutat ion.  We 
note that for all cases 

ni I> 1 . (4.5) 

Thus the only way to satisfy eq. (4.1) is if 

n l = n 2 = n 3 = l  . 

Thus, either 

o r  

h i =  h2= h 3 = 0 ,  (4.6a) 

hi = h2  = h3  = 4-1 • ( 4 . 6 b )  

The first possibility can be eliminated by C P T  invariance. If we replace every 
helicity-zero particle by its C P T  transform, the matrix elements of J "  change sign. 
Thus the graphs with helicity-zero particles going around the triangle cancel in 
pairs. Only the second possibility remains, and the argument  is complete.  

5. Self-criticism 

The flaws in our reasoning (or at least those we are aware of) fall into two classes. 
First, we use the principles of analytic S-matrix theory, and the grounds on which 

these principles were established are far from solid, consisting in some cases of 
little more  than perturbat ion theory and intelligent guessing. We do not think this 
is a serious problem; we believe the principles we have used are extremely plausible, 
even if not absolutely certain. However,  it would indeed be very nice if they could 
be derived from the Wightman axioms, for example.  We don ' t  think this will happen 
soon, though; axiomatic field theory is notoriously difficult for theories with massless 
particles. 

Secondly, and more seriously, in our analysis of singularities in sects. 3 and 4, 
we have had to continually assume that there are no singularities lurking in the 
vertices of our graphs. This assumption is not in general true. For example,  if we 
consider the analogy with potential  scattering made at the beginning of sect. 4, a 
partial-wave amplitude need not vanish at threshold if there is a threshold bound 
state; a dynamical singularity may cancel (or at least reduce the order of) a kinematic 
zero. 

We think it might be possible to eliminate this possibility in the analysis of sect. 
4. Our idea is best explained in a definite example.  Suppose we have a vertex at 

which h2  = 3 and h3 = _ 1 .  By eq. (4.4a) nl = 3; it was for this reason that we rejected 
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this vertex in sect. 4. But actually, all we know from the analysis of kinematic zeros 
is that the matrix element  of the current between the two massless particles is a 
kinematic factor that is proport ional  to Q3 times an invariant function of Q2. How 
do we know the invariant function does not have a pole at Q2 = 0? 

In this case, we can answer the question. If the invariant function had a pole at 
Q 2 =  0, it would imply that there would be a non-zero amplitude for the current 
to create a massless particle out of the vacuum. But by Goldstone 's  theorem, this 
would imply that the symmetry  associated with the current would be spontaneously 

broken,  and we have explicitly assumed that this is not the case. 
We a t tempted to generalize this reasoning to take care of our problems, but we 

became lost in a dark wood of technical complications. This failure had led one of 
us (B.G.) to try a different approach,  ignoring zeros and singularities altogether, 
and at tempting simply to show that the putative wrong helicities are incapable of 
producing the proper  tensor structure in the discontinuity of F. He  is completing 
his investigation now and hopes to publish his results shortly. 

We began this investigation at the 1980 summer  session of the Aspen Center  
for Physics. We thank the Center  and its staff for their support.  We also thank 
Estia Eichten, John Preskill, and Lenny Susskind for conversations which strongly 
influenced the course of this work. 

This research was supported in part  by the National Science Foundation under 
grant no. PHY77-22864,  and by the U.S. Depar tment  of Energy under Contract  
No. D E - A C O 2 - 8 2 E R 4 0 0 3 3 . B 0 0 0 .  

This paper  is based on material  submitted by one of us (B.G.) in partial fulfillment 
of the requirements for the Ph.D. degree at Harvard  University. 

Appendix A 

NO NON-PERTURBATIVE CORRECTIONS TO THE ANOMALY 

To show rigorously, independently of perturbat ion theory, that there is no 
correction to the anomaly equation in quantum chromodynamics would require 
first demonstrating,  independently of perturbat ion theory, that quantum chromody-  
namics exists. This has not yet been done, so we must be less ambitious. We propose 
to show that there exists a cutoff procedure such that cutoff chromodynamics has 
no correction to the anomaly equation, independent  of perturbat ion theory, for 
any value of the cutoff parameters .  Thus, if one could show, as we can not, that 
the theory has a limit as the cutoffs are removed,  one would know that this limit 
has no corrections to the anomaly. 

We will work in the euclidean formulation of the theory, and in some fixed gauge 
(for example,  axial gauge). We will place both an infrared and an ultraviolet cutoff 
on the gauge field. For the infrared cutoff, we will demand that the gauge field 
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vanish outside some large box; for the ultraviolet cutoff, we will demand that the 
Fourier expansion of the gauge field within the box terminate at some large wave 
number.  For our purposes, we will need neither an infrared nor an ultraviolet cutoff 
on the quark fields. 

This procedure spoils both Lorentz invariance and translational invariance. 
However ,  it does not spoil chiral symmetry;  J "  is still conserved. 

Now let us analyze the cutoff theory by first studying the dynamics of the quarks 
in a fixed gauge field. The gauge field is infinitely differentiable (because it is the 
sum of a finite number  of Fourier components)  and of compact  support,  so it is 
easy to show (for example,  by the classic Fredholm methods used in abelian 
electrodynamics by Salam and Matthews [7]) that the quark propagator  exists and 
that at short distances its leading singularity is the same as in free field theory. 

Still working with a fixed gauge field, we construct F. This is exactly the triangle 
graph, with full propagators  on the legs. Because the current is conserved, the 
anomaly is given by the leading short-distance singularity in F ;  this is given by the 
short-distance singularities in the propagators,  and is thus the same as in free theory. 

We now functionally integrate over the gauge fields. But since we have both an 
infrared and an ultraviolet cutoff, the functional integral is just an ordinary finite- 
dimensional integral. Thus if there is no correction to the anomaly in the integrand 
there is none in the integral. 

This completes our hand-waving. 

Appendix B 

ALTERNATIVE TRIANGULAR ARGUMENT 

In this appendix we give an alternative argument  to the one given at the end of 
sect. 3, to show that only the triangle graph contributes to the singularity. This 
argument  uses the rules for kinematic zeros given in sect. 4. 

Let  us consider a general graph that can contribute to the singularity, with all 
internal momenta  null, forward-pointing, and collinear, as described in the para-  
graph following eq. (3.5). Let  us refer to the three vertices at which the currents 
enter as "external  vertices" and to the other vertices as "internal vertices". Let  
us consider a general internal vertex involving at least one particle of non-zero 
helicity. Since all momenta  at such a vertex are null and collinear, we can make 
them all go to zero simultaneously by making an appropriate  Lorentz boost; in 
this limit, the vertex must vanish. But the vertex is Lorentz-invariant;  the only way 
it can do this is to vanish before the transformation. Thus each internal vertex must 
involve helicity-zero particles only. 

By the arguments given in sect. 3, all internal vertices involving only three 
particles must vanish, or else we would obtain unacceptable long-distance interac- 
tions. (It is important  to r emember  that a three-particle vertex is a number,  a 
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coupling constant, and thus there is no possibility of a cancellation when integrating 
over angles or such. If the unacceptable singularity vanishes, the vertex must vanish.) 
Thus each internal vertex must involve at least four particles. 

At the external vertices, by the arguments given in sect. 4, there must be either 
particles of helicity zero or particles of helicity + ½ (possibily with additional particles 
of helicity zero.) If every vertex has only helicity-zero particles, the contribution 
to the discontinuity vanishes, by the C T P  argument given at the end of sect. 4. 
Thus at least one vertex must involve a pair of particles of helicity + 1. Since these 
particles are not allowed to interact at internal vertices, they must appear at all 
the external vertices to keep the graph connected. Also to keep the graph connected, 
there must be at least two external vertices at which helicity-zero particles appear. 

To summarize, we have found that a general graph contributing to the 
singularity consists of the fundamental triangle of helicity + ½ particles, decorated 
by helicity-zero particles. These helicity-zero particles must be created at some 
external vertex and destroyed at some other external vertex. Between their 
creation and destruction, they are allowed to interact with each other, but only 
through vertices involving at least four particles. They are not allowed to 
interact with the particles of helicity + 1. 

We have computed in the text that the discontinuity is a homogeneous function 
of Q of order  minus one, if there are no internal helicity-zero particles. We are 
now in a position to compute the order if there are. 

Let  us denote the order of the discontinuity by N, the total number of vertices 
in the graph (internal and external) by V, the number of internal lines (of any 
helicity) by / ,  and the number of independent closed loops by L. Then, by elementary 
power counting, 

N = 4 L - 2 I  + 1 ,  

where the last term comes from the kinematic zeros of the external vertices, as 
computed in sect. 4. By standard reasoning, 

Thus, 

L = I - V + I .  

N = 2 1 - 4 V + 5 .  

Every internal line has two ends which terminate on vertices. Every internal vertex 
has at least four internal lines terminating on it. The three external vertices have 
at least eight internal lines terminating on them, six lines for particles of helicity 
+ 1 and at least two lines for particles of helicity zero. Thus, 

2 I ~ 8 + 4 ( V - 3 ) .  

Hence 

N~>I  . 
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BUt this  m e a n s  the  g r a p h  c o n t r i b u t e s  n o t h i n g  at  all  to  t h e  d i s con t inu i t y ,  s ince  t h e r e  

is no  h o m o g e n e o u s  f u n c t i o n  of  p o s i t i v e  o r d e r  w i th  s u p p o r t  r e s t r i c t e d  to  Q2  = 0. 
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