
Nuclear Physics B129 (1977) 493-510 
© North-Holland Publishing Company 
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We study the Euclidean partition function of Abelian lattice (gauge) theories in various 
dimensions. Using generalizations of mathematical methods developed recently to study 
the XY model in two dimensions, we obtain useful expressions for the partition functions 
and physical pictures of the phases of these more complicated theories. Approximate dual- 
ity relations and dilute gas approximations yield estimates of critical coupling constants 
which separate confining and non-confining phases for the rotor model in three dimen- 
sions and Abelian lattice gauge theory in four dimensions. Generalizations of this work to 
non-Abelian continuum theories are discussed. 

1. Introduction 

The strong coupling approach to lattice gauge theory [1 ] promises to provide us 
with a systematic and convergent approximation to the masses and static properties 
of the low-lying hadrons in QCD. The basic premise of this approach is that the 
theory has no "phase transition" which would prevent us from extrapolating from 
the strong to the weak coupling region. This assumption is tested automatically in 
each order of the strong coupling Pad6 approximants and to lowest nontrivial order 
the results are attractive: Abelian gauge theories have a transition in 4 dimensions 
while non-Abelian ones do not. 

However, even if this attractive state of affairs survives higher order calculations, 
we will be uneasy about the fact that Pad6 approximants understand the difference 
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between Abelian and non-Abelian gauge theories better than we do. In this paper we 
will attempt to remove this feeling of  uneasiness by presenting an intuitive physical 
picture of  the phase transitions in Abelian lattice theories. 

The crucial ingredients in this picture are certain solutions of  the continuum clas- 
sical field equations with singular sources. Polyakov [2] has pioneered the investiga- 
tion of  phase transitions in terms of  Euclidean classical fields, and many of our results 
were anticipated by him. However we obtain these results by a series of exact trans- 
formations without appealing to the method of steepest descent. Thus our methods 
are not necessarily restricted to the regime of  extremely weak coupling and we can 
investigate phase transitions at finite g. 

The method we shall use is a direct generalization of  the technique used by Jos~, 
Kadanoff, Kirkpatrick and Nelson (JKKN) [3] to derive the Kosterlitz-Thouless [4] 
"vortex + spinwave" picture of  the two-dimensional plane rotor model. We will find 
an analogous "monopole + photon" picture of  lattice gauge theory in 3 dimensions 
and a "monopole current loop + photon" picture in 4 dimensions. In 5 dimensions 
we would have monopole surface charges etc. The method also generalizes to plane 
rotor models in higher dimensions, and we find an intimate connection between the 
d-dimensional rotor model and the d + 1 dimensional gauge theory. 

Unfortunately, we do not at present know how to extend the JKKN method to 
theories with non-Abelian symmetry groups. We do believe that the intuition we 
have gained from the Abelian theories will be helpful in understanding the non-Abelian 
case as well. This will be discussed in the last section of the paper. 

After this work was completed we received interesting preprints by Savit [5] and 
Glimm and Jaffe [6] dealing with Abelian lattice gauge theories. These authors have 
arrived at the picture of  the low temperature phase of  these theories that is presented 
in this paper. We expect that many of  the results we present here are known to the 
above authors as well as to other workers actively engaged in this field. 

2. Three-dimensional gauge model 

We begin by studying the three-dimensional Abelian lattice gauge theory. The most 
important correlation function in this theory is Wilson's [1 ] line integral, 
(exp(i f A u dxu)) which is given by e-w(c) = Z(J)/Z(O) with 

27T 

z(a- FI f 
r,# 0 

dOu(r ) e x p  [ -13Er ,~ ,  v (1 - c o s  Our(r))] e x p  [iZr, uOu(r) J u ( r ) ]  . 
( 1 )  

O.(r) is the angle on the directed link r -~ r +/5 and 

o . v ( r )  = zx .Ov(r)  - ~vO . ( r )  (2) 
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with A u a finite difference operator. The current Ju is defined by 

.+1 if link r -~ r + ~tis in the contour C 

J u ( r ) = {  1 if link r + ~ ~ r is in the contour C 

- 0  otherwise. (3) 

The integrand of  (1) is a periodic function of  each Our(r) variable and so can be 
expanded in a Fourier series 

e -~(1-c°s°uv) = ~ eiluv°u v e -~ Iluv(13 ) . (4) 
l i a r  = __  o o  

For large/3 the modified Bessel function in (4) can be approximated by 

e-311(13) ~ e - 1 2 / 4 g / N / ~ .  (5) 
~.--~ oo 

We will take the Fourier transform of the Gibbs factor to be given by (5) for all 13. 
This defines the Villain [7] or periodic Gaussian model. We would certainly expect 
this model to be in the same universality class as the original interaction and thus to 
have the same kind of  phase diagram. Furthermore, as far as continuum gauge 
theories are concerned, the two models are on the same footing. They both provide 
gauge invariant regularizations of  the continuum theory which exhibit confinement 
in the strong coupling limit. 

Using the expansion (4) we can do all of  the 0 u integrals. Each 0 u couples to 4 luv's 
and we obtain 

[__1 ~ l ~ ]  (6) Z(J)  : ~ 6avtuv(r)+S~(r), o exp ~ v . 
r ,  l a , v  l l z v ( r ) =  - -  ~o r,  la 

The sum over luv in (6) is constrained, and the simplest way to proceed is to solve 
the constraint equation. The general solution is 

toy(r) = nU(n • A) -1 a w -- n v (n" A ) - I J  u + euv x Axl(r) . (7) 

Here l(r) is an integer valued scalar field determined up to a constant by Ju and luv 
(The constant is fixed by boundary conditions at oo.) and n x is a unit vector in the 3 

direction. We have also used the notation 

[(n- A ) - l f ] ( r )  = ~ f ( r l , r 2 , m ) .  
m : - ~  

The constrained sum over luv now becomes an unconstrained sum over l which 
however converges rather slowly for large 13. We improve this convergence by using 



496 T. B a n k s  e t  al. / P h a s e  t r a n s i t i o n s  

the Poisson sum formula: i.e. the Fourier series representation of the delta function, 

~ t ~ ( X  --  l )  = ~ e  2¢rirnx 

l m 

Equivalently, 

oe~ 

g(1)= ~ f dCg(g~)e 2"imp, 
l = - - ~  m = _ ~  

where g is an arbitrary function. Now eq. (6) becomes 

Z(J)= 17r f d~r )  , ,  
_ ~ m x r s  = - ~  

{ e x p f - ~  (Ax¢)~]expI~ ~eij(n'A)-lJiAj~o 1 
L2~ ,,x ,,0" 

× exp[2ni~m(r)¢(r)]}r exp [~_-l-~]z~ r,i [(n. A)-IJi]  21 

(latin indices run over 1,2). 
Finally, we do the Gaussian functional integral over ¢, and obtain 

[_ 1 ~ ju(r) o(r _ r,) Ju(r,)l e -w(c) = exp -~ r,r'u 

(8)  

X 
m(r)=-~ 

exp [-27r/31;m(r) off - r') m(r')] exp [2zriZeuvxnu(n. A) -1AvJx(r) off 

oo  

m ( r ) = -  o~ 
exp [-2rq3Y.m(r) u(r - r') m(r')] 

r') m(r')] 

(9) 

where A~ v(r - r') = - S r r '  , i.e. v(r) is the lattice Coulomb Green function. 
Eq. (9) shows us that our problem is equivalent to a gas of magnetic monopoles 

interacting with a stationary electric current loop. The identification of m(r) with 
the magnetic monopole density is clear from eq. (9): m(r) couples via o(r - r') to 
AVBv(r ') where Bv(r') is the magnetic field generated by Ju, 

Bu(r) -'- evxu nu (n" A) -1 Jx(r) • 

Direct substition verifies that Bu(r) satisfies the three-dimensional Euclidean Maxwell 
equation 

e °p~ ApBv(r) = ~ ( r ) ,  

so Bu(r) is indeed the relevant magnetic field. 
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A familiar argument [8] shows that e -w(C) does not depend on which coordinate 
axis we choose for the direction of n, ,  as long as Jz and m are integers. 

The 3-dimensional Coulomb gas of eq. (9) is always in a plasma phase. The only 
thing that changes as we vary/3 is the density of monopoles. (We are allowing mo- 
nopoles to be created or destroyed.) We can then take over Polyakov's [2] argu- 
ments to show that for arbitrarily large finite/3 we have a mass gap and the correla- 
tion function e-w(c'3 falls like e -area(C) for large area. Thus three-dimensional Abelian 
lattice gauge theory has no phase transition and the potential between static charges 
rises linearly with the separation. A lattice version of these arguments appears in 
appendix A. 

As the lattice spacing and 1/fl go zero (the usual continuum limit) the Coulomb 
self-energy of the monopoles blows up and their density goes to zero exponentially. 
This causes the coefficient of the linear force law to go to zero and we regain the 
usual continuum theory - free electromagnetism in three dimensions. 

The informed reader will have noted that our derivation followed precisely the 
JKKN [3] argument for the plane rotor models. The results are also precisely the 
same. After duality transformation the two theories become dimensional continua- 
tions of a single model, the classical Coulomb gas, on a lattice. 

3. Three-dimensional 0(2) classical Heisenberg model 

_ / c o s  0 "~ The basic variable here is a two-component unit vector s - ksin0/. The spin correla- 
tion function is given by 

(S+(R) S_(0)) = (S l + iS2(R ), S 1 - iS2(0)) 

2~ 

0 

dO(r) exp [-fl ~ (1 - cos AuO)] exp (i [O(R) - 0(0)1 } 
r, 

21r 

f dO(r) exp[ -~  ~ (1 - cos AuO)] r~o r , #  

Again we Fourier transform and make the Villain approximation 

1-I ~_1 [-IgAlU(r),O(r)eXp(--~---~Y,12U) 
<S+(R) s _ ( 0 ) >  - r , .  ~ . ( r ) = -  = r 

I'-[ = 1-] exp(  1 El2) 
r,# l~t(r)=--~ r ~Alfllz(r)'O ---@ 

Here Q(r) -- 6r, R -- 5r, O. 
The constraint equation is solved by 

lz = nu(n .  A) -1 Q(r) + ezvx AvSx  • 

( 1 0 )  

(11) 

(12) 
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In this case however S~, is not determined uniquely by l u and Q: we have to choose a 
gauge. It is important that Sx be an integer whenever l u and Q are and for this reason 
it is convenient to choose the axial gauge n • S = 0. With this choice we have an un- 
constrained sum over $1,2 which can be transformed with the aid of the Poisson sum 
formula to read 

(s.(R) s_ (o)> 
/ 

l-I f d /r) E 
r, i _oo m i( r)=--°° 

exp I-  ~ (nu(n " A ) - l  Q + elsvi Av~Oi) 2] e2rri mi~i 

0 o  

f d,,(,) E 
• _¢¢ rni(r)=--°° 

1 ~0t)2 ] e2rriZrni~ i exp [ -  ~-~ E(euv i A v 

Now define m 3 = ( n  • A )  - l  Aim i and do to the ~i integrations. The result is 

(S+(R) S - (O)) = exp[- ~ E Q(r) u(r - r') Q(r')l 

(13) 

o o  

X ( U  E U ~Apmp(r),O exp [-4n23Zmu(r) u(r - r')mu(r')] 
r,/.t m#(r)=--oo r 

exp [27riEmu(r ) euv x nv v(r - r ') A x n" A -1 Q(r ')])  

× 
U 2] ~r 6~umu(r)'° exp[-4n23Ernu(r) v(r-  r')rnu(r')] 
r,g m~(r)=-- o~ (14) 

Eq. (14) gives the spin-spin correlation function in terms of the effective interaction 
between a pair of  point changes immersed in a gas of  monopole current loops. For 3 
large there are few loops and they are small, the large distance potential has the 
naked Coulomb form I/R, and the slSin correlation function approaches a constant 
at large distances. The theory has long range order at low temperatures. It must be 
that above some critical temperature, the effective potential becomes linear, guarantee 
ing exponential falloff of  the correlation function. We believe that the mechanism 
which forces the potential to become linear is the appearance for large enough tem- 
perature of monopole loops whose size grows without limit. We will show below that 
growth of  loops causes a phase transition but we have not yet constructed an argu- 
ment which shows that long loops imply a linear effective potential. Work on this 
problem is in progress. 

It should be noted that in the more conventional description of  the Heisenberg 
model our monopole loops would be vortex rings. It seems relatively clear that long 
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vortex rings will destroy the long range spin-spin correlations. 
There are two ways to approach the computation of the critical temperature in 

the three-dimensional Villain model. The first, a duality argument, is more rigorous 
but specific to this model. We look at the partition function (denominator of (14)). 
As one approaches the critical temperature from below the average loop size grows 
and the average loop is a very random walk. Thus we might expect that the Coulomb 
forces on any given link due to its neighbots (both on the same loop and on other 
loops) cancel. Thus we may approximate 

v ( r  - r ' )  ~ u(O) 6rr, ~ 0.253 ~rr' (ref. [9]) .  (15) 

With this approximation our dual partition function has the same form as the un- 
transformed function (denominator of (11)) with the replacement 1/4/3 ~ 4(.253)n2~3. 
We see that near the critical point the gas of tangled monopole loops is dual to the 
gas of tangled high temperature loops represented by eq. (11). In both cases the 
evaluation of the partition function is complicated but the complications are identical. 
Thus if there is a single finite temperature critical point it must be given approximat- 
ely by 

Tc ~ ~ 2 . 5 3 )  ~ 6.32 . 

A rigorous upper bound for the critical temperature of the 3-dimensional periodic 
gaussian model has been derived by Myerson [10]. It is 

Tc~<6.2. 

The corresponding bound for the full 2-component Heisenberg model is 6% above~ 
the high temperature series critical point, so our duality value is probably close but 
a bit high. 

An alternative argument of negligible rigor but wider applicability can be given 
when the gas of loops is dilute. In this cases we can neglect interactions between 
loops because they fall off at least as fast as 1 / R  3. In fact, since the "average" loop is 
fairly random there is probably a substantial cancellation of multipole moments so 
that the interaction between distant loops falls off much faster than this. The energy 
of a single loop consists of a Coulomb self-energy for each point of the loop plus the 
mutual interactions of different points. The self-energy is proportional to the length 
of the loop and for long loops the mutual interaction is negligible by comparison. 
This is because a non-backtracking loop of L steps will have a characteristic dimen- 
sion R 

R ~ L  x ' 

where x is less than 0.6 (the exponent for a three-dimensional self-avoiding walk) 
and greater than ~- (random walk with no restrictions). The mutual interaction for 
such a loop is 

~ R l n R  =L x ln  L x . 



500 T. B a n k s  e t  al. / Phase transi t ions 

For large L this is ignorable when compared to the (= L) self-energy. The number of 
loops of length L through a given point is the number of non-backtracking random 
walks on the lattice which return to the origin. This number goes asymptotically like 

f(L) ~L 
for large L. Here f is a relatively slowly varying function, perhaps a power ofL. A 
simple argument can be given which bounds/a between 5 and x/3. Intuitively we 
would expect # to be closer to the upper bound and this expectation is partially con- 
firmed by numerical studied of self avoiding walks [11]. (There are clearly more non 
backtracking walks than self-avoiding walks, and the number of self avoiding walks 
on a lattice goes like #L (times a power of L) with t~ near q - 1 where q is the num- 
ber of nearest neighbors.) 

Naive balancing of the energy and entropy of a large loop now gives 

47r2(0.253) 
Tc 

in 

with # ~< 5. Note that/~ = 5 gives approximate consistency with our duality result. 

4. Four-dimensional lattice gauge theory 

After the last two sections the analysis of the 4-dimensional gauge theory is rather 
trivial. We start from the 4-dimensional analog of eqs. (1) and (2), but the solution 
of the constraint equation is 

luv = nu(n" A) -1 Jv - nv(n " A)- l Ju  + euvx~ AxlK , (16) 

which has a gauge freedom like eq. (12). The argument now follows that of the 
previous section and results in 

_ 1  X Ju(r) o(r - r') Ju(r ')] e w(c )  = exp 213 

X ( [7 ~ [-1 6Aumu(r),O exp[-rrZl3mu(r)  u(r - r ' )mu(r ' ) ]  
r, la m u(r)  r 

× exp[2rri~mu(r)  euvx~ nv v ( r -  r') Ax(n" A)-lJ~(r)])  (17) 

(game thing with J = 0) 

This describes an electric current loop interacting with a gas of monopole cur- 
rent loops. This is a two-phase system and the critical temperature Tc which sep- 
arates the phases will be estimated below using the methods applied in the previous 
section to the rotor model. Roughly speaking, the phase transition is of the following 
character. For T < Tc there will be few monopole loops and they will be small in 
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spatial extent. Increasing T increases the density and sizes of  the loops. At Tc the 
theory's vacuum becomes a gas of  monopoles and anti-monopoles without strong 
correlations. Hence, the monopole number density V- B in the vacuum is indefinite. 
Then the electric field in the vacuum can be definite and presumably vanishes. If a 
charged impurity (quark) is placed in this vacuum its attendent electric field can 
spread from its source only by excluding monopole anti-monopole pairs from the 
space it occupies. So, if a quark is placed at position R and an anti-quark at - R  the 

electric flux which must connect them will seek a spatial configuration to minimize 
the energy. It is reasonable then to expect a flux tube of  length 2R and finite trans- 
verse extent to develop and produce a linearly rising q~ potential. Roughly speaking, 
this phenomenon is the Meissner effect with an electric-magnetic intercharge. It has 
been discussed previously by Mandelstam and 't  Hooft [12], although now we are 
in a position to quantify it. Additional work in this direction is in progress. 

To estimate the critical temperature for this transition we can use the dilute gas 
argument of  sect. 3 

7r 2 v ( 0 )  
Tc - , (18) 

In 

where/~ (~7) is defined as in sect. 3, but for 4-dimensional non-back-tracking walks. 
u(0), the value of  the 4-dimensional lattice Coulomb potential at the origin has not 
(to our knowledge) been calculated exactly. Using the results of  ref. [13] we esti- 
mate it to be about 0.38. Unfortunately we have no independent calculation of  the 
critical temperature of the 4-dimensional lattice gauge theory to compare with (18). 

We believe that the qualitative results of  this section are of great importance. They 
indicate that the 't  Hooft-Mandelstam [12] "dual Meissner effect" and the confine- 
ment mechanism of strongly coupled lattice gauge theories are one and the same 
phenomenon. We hope that these new insights will lead us to better understanding 
of  non-Abelian gauge theories. In the next section we will attempt to outline some 
of  the important features of  non-Abelian gauge theories in the light of  our analysis. 

5. Non-Abelian theories 

The techniques we have used in this paper do not generalize simply to non-Abelian 
theories. However, we believe that the intuition we have gained is useful in under- 
standing what goes on in these theories also. 

The first thing we should expect is that classical solutions with singular sources 
should be important in non-Abelian theories. However, in non-Abelian theories we 
may expect the Coulomb self energy of  the monopoles to be regularized so that they 
survive in the continuum limit. A good example of  this is the 't  Hooft-Polyakov [14] 
monopole in the 3-dimensional Glashow model. The way in which the charged vector 
fields in this model regularize the monopole self-energy has been most explicitly 
described by Vinciarelli and Troost [15]. 
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One can also find regularized vortices in the 2-dimensional 0(3)  nonlinear o model. 
These were first discovered by Susskind [16], and have the form 

¢(r, O) = O(R - r) 

! cos 0 

2rR 
r2 + R~ sin 0 

r 2 _ R 2 

r 2 + R 2 

,COS 0~ 

+0(r " (on0 ) (19) 

They are solutions of  the equations of  motion everywhere except on the circle r = R,  
and have logarithmically divergent action. A finite action vortex anti-vortex pair can 
be constructed. 

Finally we consider the 4-dimensional non-Abelian gauge theory.  As we have seen, 
the corresponding Abelian lattice theory contains monopole current loops. We 
believe that an analogous non-Abelian object is the meron of  refs. [17,19]. The 
Minkowski-space interpretat ion of the monopole loop is a tunneling process in which 
the bare vacuum mixes with a state of  a monopole anti-monopole pair. Mandelstam 
[18] has pointed out that the meron can be viewed as a "smoothed out"  version of 
this process. To see this consider the singular solution of DeAlfaro et al. [19] (We 
use the notat ion of  Jackiw and Rebbi [20].) 

Recall that  this potential  generates half a unit of  topological charge, 

1 
D ( x )  = ~ tr Fur  Fuv , 

at the origin and another half unit at infinity. By suitable conformal and gauge 
transformations these regions of  non-vanishing D(x)  can be moved to arbitrary 
points x 1 and x 2. Eq. (20) is convenient for the discussion here since it allows us to 
concentrate just on one member of  the monopole pair. This vector potential gives 

rise to field strengths 

1 (x 2 a x j + X i X a )  (21a) Ba = xg + x ~ ~i + Xo ei/a 

1 
Ea = x~ + x ~ (x°e i jax j  + 6ia x2 - XiXa) " (21b) 

We perform a local gauge transformation which rotates Xa into 6a3 Ixl and loo1~ at 
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time x o = 0. Then 

E~ = B I ' 2  = 0 ,  (22) 

: x ;  ( 2 3 )  
ixl3 ' 

E 1,2 .B 3 = 0 .  (24) 

At this time the configuration looks like a magnetic monopole at the origin. To see 
how it evolves we study the "abelian" magnetic field B 3 for arbitrary times 

B 3 - - -  (25) 
X 2 + X 2 • 

The magnetic charge density is 

1 B3 = 2x~ (26)  
v ]xl +x ' 

giving rise to a conserved magnetic charge 

Qm(xo) = fd3x a , .  = 1 . (27) 

Thus the meron corresponds to a process where a diffuse magnetic charge density is 
created, coalesces into a monopole-antimonopole pair (above we have considered 
only half of  the pair) and rediffuses into the vacuum. This method of  creating mo- 
nopoles is energy efficient, costing an action proportional to the logarithm of the 
distance between the pair. Of course the configuration is ultraviolet singular and 
must be regularized as in ref. [17]. 

We believe that there may be another configuration relevant to the physics of  
non-Abelian gauge fields. This would be regularized version of  a closed string of  
Wu-Yang [21] monopoles. 

For a long straight (time-like) piece of the string such a configuration would be 
time independent and given by the Wu-Yang Formula 

x] 
A a ( x ,  XO) : Cij a - ~  . (28) 

Of course to obtain a finite continuum action this configuration must be regularized, 
and the string must be closed. A possible regularization of  the Wu-Yang solution is 
given by 

Aai(x)  = e l /a  x ]  O(~k - r)' + O(r - X)-~ . (29) 

In the appendix we demonstrate that there exists a function g such that 
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(a) the energy of  the above configuration is finite; 
(b) eqaX/g(r)/r 2 satisfies the static Yang-Mills equations for r < X; 
(c) g(X) = 1 so that A~ is continuous and the field strengths finite. 
This configuration shares with the meron and the vortex (19) the property that 

it satisfies the classical field equations everywhere except on a lower dimensional 
manifold (in this case the surface of a sphere in 3 dimensions), but its construction 
is a bit too ad hoc. One can also invent ad hoc descriptions of  the configuration cor- 
responding to a closed string of  monopoles. Hopefully an extension of  our methods 
to non-Abelian theories will lead to a natural definition of  such regularized mono- 
pole loops. 

The monopole string configuration is not as efficient as the meron in creating 
monopoles (if costs an action linear in the separation of  the monopole-antimonopole 
pair) but it also has an entropy (corresponding to the number of  configurations of  
the string) which grows linearly with the length of  the string. It would seem that 
only a detailed calculation can decide which of  these configurations is more impor- 
tant. 

Non-Abelian theories have two other properties not shared by their Abelian 
counterparts. The first of  these is perturbative asymptotic freedom whose significance 
can be seen by the following argument. The 2-dimensional 0(2)  Heisenberg model 
and the 4-dimensional Abelian lattice gauge theory have topological excitations 
which act to destroy long range correlations. However, even on the lattice there is a 
finite range of temperatures for which the excitations are bound together and do not 
effect the long range correlation. In non-Abelian theories however, perturbative 
asymptotic freedom implies that the effective temperature rises with the length scale 
and the correlation destroying excitations are always unbound. 

The second new feature of  (some) non-Abelian theories is the existence of  
instantons. There is no analog of  these objects in the Abelian theories that we have 
studied and we have nothing to say about their role in confinement or the destruc- 
tion of  correlations. They do appear to provide the most natural mechanism for reg- 
ularizing the vortex or monopole configurations that we have discussed. 

6. Conclusion 

We have seen that the phase transitions in Abelian lattice gauge theories may be 
understood in terms of  monopole or vortex configurations. These arise because the 
variables on the lattice are angles. Of course, for an Abelian gauge theory the angle 
variable formalism is a matter of  choice - the continuum theory does not tell us 
whether the gauge group is compact. For a non-Abelian theory the compactness of  
the group is manifest even in the infinitesimal algebra, and the angle formalism is a 
necessity. Thus configurations analogous to those we have discussed should be im- 
portant for non-Abelian theories also. 

We view the extension of  the JKKN methods to non-Abelian theories to be the 
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primary challenge posed by our work. Vortex and monopole-like configurations have 
already been found in non-Abelian theories by semi-classical methods. However, 
they are not usually exact stationary points of the continuum action and this leads 
to complications in the application of semiclassical methods. Clearly, a treatment 
analogous to the one presented here would clarify what we mean by "the meron 
contribution to the path integral" for arbitrary values of the coupling constant. It 
may also lead us to a deeper understanding of the role of instantons and to a method 
for incorporating all of these semi-classical excitations into a viable computational 
scheme. 

Our aim in the present paper has been to present a qualitative picture of the 
phase transitions in Abelian gauge theories rather than to compute detailed prop- 
erties of the models. If our sort of approach is ever to prove useful in hadron 
physics however we must learn how to use monopole excitations to do computa- 
tions. As a warm up exercise, it would be interesting to try to compute the critical 
indices of the 3-dimensional plane rotor model by studying the gas of vortex rings. 
A related attempt has been made by Wiegel [22] in the context of liquid helium. 
Wiegel counted self-avoiding rather that non-back-tracking walks and neglected the 
interaction between vortex rings due to phonon exchange (what we have called long 
range Coulomb interaction in the text). Thus his failure to get the right critical 
indices may be remediable. We hope to return to this problem in the near future. 

One of the authors (JK) would like to thank B. Baaquie, L. Susskind, M. Peskin 
and Oliver MacBryan for several illuminating discussions. T.B. and R.M. have ben- 
efitted from conversations with A. Jevicki and S. Nussinov. They would also like to 
thank Professor F. Dyson for a discussion of the duality argument used in sect. 3 
and the Institute for Advanced Study for its hospitality. Finally, T.B. would like to 
thank C. Callan, R. Dashen and D. Gross for extensive discussions of their work on 
merons. 

Appendix A 

In his pioneering work on compact abelian gauge theories in three dimensions [23], 
Polyakov verified confinement explicitly by obtaining a linear potential between 
heavy quarks. In this appendix we obtain similar results and a physical picture of 
confinement using the dual form of the correlation function, 

(exp(ie ~ cAudxU )) = Z ( J ) / Z ( O )  , (A.1) 

where 

Z(J) = exp 2 ~  r,, 
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c , o  

X ~ exp[ -  2 ~ m ( r )  v ( r - r ' ,m( r ' ) ]  e x p I 2 7 r i e ~ e u v x n  u 
m(r)=-oo g2a r,r' g r,r' 

AvJx(r ) v(r - r') m(r ')]  , (A.2) X (n- A) -1 

where we have restored conventional field theory notation (g = coupling constant 
with dimensions [mass] 1/2, e = arbitrary "charge" of external current, xu = (x, y, t) 
and repeated indices are summed.) 

Consider eq. (A.2) for a simple choice o f J  u. Separate a quark and an anti-quark 
slowly a large distance (many lattice spacings ) R in the x direction, retain that con- 
figuration for a much longer time T, then bring the quarks back together as they 
were separated. For most of the contour (call it C), 

Ju = 8u3 [6x,R/2 - 8x,-R/2] 6y,o • (A.3) 

Choosing n u in the x direction, we compute the following quantity appearing in 
eq. (A.2). 

euvx nu(n " A) -1 Jx(r) = Os(xt) ~y,O , (A.4) 

where Os(xt ) = 1 i fx  and t are inside C and zero otherwise. Therefore, the monopole 
density Av=20s(xt) 5y,o generated by the external loop and coupling to lattice mo- 
nopoles re(r) in eq. (A.2) is a dipole sheet one lattice spacing thick of magnetic mo- 
nopoles of strength e/g. An intuitive picture of quark confinement follows from this. 
Eq. (A.2) represents a dipole sheet immersed in a monopole gas. The mobile massive 
monopoles react to the presence of the sheet and in their most likely configuration 
will distribute themselves in order to screen out the magnetic field inside the dipole 
sheet thereby minimizing the system's energy. However, a detailed analysis [23] 
shows that the sheet cannot be screened completely and there is a finite energy den- 
sity left behind the quarks interact through a potential which grows linearly with 
R((exp(ie ~ cA u dxU)) ~ exp(-area enclosed by C)). 

Now, following Polyakov [23], we will rewrite eq. (A.2) in the form of an effec- 
tive field theory of screening. In the last term of that equation compute, near the 
sheet, 

- ~ AyOs(xt) ~y,o o(r - r') ~ Os(xt ) O(y). 
r 

This is just the potential due to the dipole sheet. Now, 

Z'(J') = ~ expV- ~ ~ '  m(r)o(r -  r')m(r') 2rr 
rn(r)=--~ I_ g a r,r' g2a 

(A.5) 

X Oo ~ m(r) 2 - 27ri e ~ Os(xt) O(y) m(r) l ,  
r g r 

(A.6) 
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where 

1 r') Ju(r')] 

t and v0 = 0.253 determines the mass of each monopole and Er,r' indicates a sum over 
r and r' omitting r = r'. To expedite the sum over m(r) write, 

2"(./)= H fd¢(r )exp[ -~g  2 a~(,x ~)2] E 
r re(r) = - 

2~ 
exp -~T~ Vo ~r  m(r)2 

- 27rieg ~r Os(xt) O(y) m(r) + i ~r $(r) m(r)]. (A.7) 

Now choose a small lattice spacing, i.e. (g2a)-I large, so that the mass of each mo- 
nopole is large. Then the gas is dilute and only m(r) = - 1 , 0 ,  +1 need be kept in the 
sum. Then, 

E 
rn(r) = - ~, 

27r e ] 
exp - - T -  vom(r) 2 - 27ri-Os(xt ) O(y) m(r) + i¢(r) re(r) g-a g 

I_2g~a o] ( e ) {terms with ] 
=1 + 2 e x p  v cos 27rgOs(xt) O(y)+4~(r ) +\lm(r)l> 1]  

2rr e q~(r))). 
~ exp(2 exp[-g-~a vol cos(2rrgOx(xt) O(y)+ (A.8) 

So, 

j [ Z(J) ~ Hr de(r) exp - ~ g 2 a  ~r (A~q~)2 + 2 exp[ g a r 

cosI .gO (xt, I (A.9) 

which is the discrete form of Polyakov's eq. (5.20) [23 ]. At this point our analysis 
parallels his, so the reader should consult the original work. From eq. (A.9) note 
that the coefficient of the linear potential will be proportional to exp(-27r/g2a Vo) 
and vanishes non-analytically in the continuum (a -+ 0) limit. 
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Appendix B 

We will consider vector potentials of  the form 

g(r) 
Aa(x) = eij a xj r2 , (B.1) 

which is the most general form invariant under combined rotations and SU(2) gauge 
transformations and antisymmetric under interchange of group and spatial indices. 
We require 

(i) A a satisfies the static Yang-Mills equations (gauge group SU(2), space dimen- 
sion 3) for r < X. 

(ii) fdar 0(X - Irl) Fg .2 < oo where Fg- is the field strength tensor formed from A. 
(iii) g(X) = 1, so that A connects continuously to the Wu-Yang solution at r = X. 

We construct the action in terms o f g  and the variable t = In X/r 

4~f 
S=--~  dt et(g2 + 2ga + lg4 + 2g2).  (B.2) 

o 

Symmetry considerations assure us that a stationary point of  (B.2) gives rise to a 
solution of the Yang-Mills equations when inserted into (B.1). 

The Euler-Lagrange equation for g is 

+ g = 3gZ + g3 + 2g .  (B.3) 

Its order can be reduced by defining 

g( t )  = -v (g( t ) )  , (B.4) 

Then 

g(t) dx 

t : - f v(x)" 
go 

(B.5)  

do 
v = 3g 2 + g3 + 2g.  (B.6) O~gg- 

Our boundary condition g(r = X) = 1 reduces to 

go = 1 ( a . 7 )  

and the requirement of finite action will be satisfied i fg  and g ~ 0 sufficiently fast 
as t ~ o~, and have no singularities for finite L This implies that 

v(0) = 0 ,  (B.8) 

oo> v(g) > 0 f o r 0 < g < ~  1 . (B.9) 
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With these condi t ions  g(r) will vary smoo th ly  f rom 0 to 1 as r goes f rom 0 to X. For  

small g, an approx imate  solut ion to (B.6) satisfying (B.8) is 

v(g) ~ 2g ,  g ~ 0 .  (B.10) 

Plugging this into (B.5) we see that  g t ~  e - 2  t and the act ion is finite. For  a solu- 

t ion obeying (B.10),  v and (dv/dg - 1) are bo th  positive for small g. But the right- 

hand side o f  (B.6) is positive for positive g so if  v and v' are cont inuous ,  a solut ion 

of  (B.6) that  goes like 2g  for small g will be positive for all g in (0, 1 ], thus satisfying 

(B.9). The only possible problem is a singularity in v or dv/dg but  

do _ 1 + 3g2 + g3 + 2g , (B. 11) 
v 

so it is only  singular when v = 0. B_ut o(g0) = 0 and v(g) > 0 for 0 < g < g 0  implies 
that  dv/dg < 0 for some 0 < g 0  < g o  which contradic ts  (B.11). Thus dv/dg is non- 

singular on (0,1] and so is v = ~o dv/dg. 
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