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We investigate the phase structure of Zp lattice gauge models in 4 dimensions in the presence 
of a 0-parameter. In this system Witten's result that monopoles acquire a fractional charge is 
readily obtained. A very rich phase structure is uncovered as a function of p, 0 and the coupling 
constant. In addition to the usual electric and magnetic condensations, the phases, suggested by 
't Hooft, of dyonic condensation and oblique confinement occur. A two-dimensional model with 
analogous structure is constructed and analyzed by renormalization group methods. 

1. Introduction 

Recently, ' t  Hoof t  [1] has argued that the relevant degrees of freedom of an 
S U ( N )  gauge theory on intermediate length scales may  be realized by a partial 
fixing of the gauge, which leaves a maximal abelian subgroup U( I )  u 1 unbroken. 

The quarks and gluons of  the theory have 'electric' charges with respect to these U(1) 

symmetries. The gauge condit ion becomes singular at points in three-dimensional 
space, which are magnetic monopoles  with respect to the U(1) subgroups. Ordinary  
conf inement  occurs when these monopoles  condense in the vacuum. In principle, 
other  phases of the theory are possible: a Higgs phase where the electric charges 
condense and monopoles  are confined, and a Coulomb phase with massless gauge 

bosons  and no confinement.  
However,  this simple picture may change if the theory has a non-zero 0-angle. 

Indeed, it is already known f rom the case of  the massive Schwinger [2] model that a 
0 like parameter  m a y  change the phase of the system. It was claimed by Callen, 
Dashen and Gross [3] that  a similar phenomena  will occur in (QCD)4. ' t  Hoof t  [1] 

has shown that, due to the joint  presence of gluons and monopoles  in QCD,  a rich 
phase structure may  emerge as a function of 0. In that case, Witten [4] has argued 
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that magnetic monopoles will also have electric charge, proportional to 0. 't Hooft  
then argues that, for 0 -  ~r, monopoles are unlikely to condense at strong coupling, 
but instead bound states of monopoles and charges carrying small overall electric 
charge will condense. These phases have a number of unusual features, and are 
referred to as oblique confinement. 

Because of the qualitative nature of these arguments, it is desirable to have a 
simple model in which these possibilities can be analysed in greater detail. We 
consider an abelian Zp lattice gauge theory in four dimensions [5]. This model has 
excitations corresponding to Higgs particles, with charge p times the fundamental 
unit, which condense for weak coupling into a Higgs phase. These are also mono- 
poles, resulting from the compact formulation of the lattice theory, which condense 
at strong coupling into a charge confining phase. For sufficiently large p, there is 
also an intermediate Coulomb phase, in which free photons exist. It is in this model 
that we now consider the effect of a non-zero 0 angle. In the continuum limit, this 
corresponds to adding a term 

iOg2 f F~P,~d4x (1.1) 
16~r 2 

to the action. In general, there is no really elegant way of writing the analogue of (1) 
for the lattice theory [6], but we find, in the abelian case, a relatively simple 
prescription which leads naturally to Witten's result on the dyonic nature of 
monopoles. Note that, although there is no necessity based on instanton ideas to add 
such a term to an abelian theory, it would play an important role in the presence of 

monopoles. 
The phase structure of the model may be understood by estimating the free 

energies of the various possible condensates and choosing the lowest one. These 
estimates are somewhat crude, and to analyse their validity we consider an analo- 
gous two-dimensional spin model for which more precise statements based on the 
renormalization group can be made. The model is constructed from the gauge theory 
by a simple dimensional reduction procedure which ignores the dependence of the 
fields on two of the coordinates. The renormalization group analysis confirms the 
simple free energy arguments in this case, and the model turns out to be related to 
other interesting two-dimensional models. However, we do not pursue this question 
in this paper. 

Our results can be summarized as follows. The phase diagram depends on p and 0. 
For a given 0, various phases are possible, and which ones are actually present 
depends to some extent on p. However, the generic phase diagram for O 4 = 0 is shown 
in fig. 1. At weak coupling there is always a Higgs phase. This is followed by a 
Coulomb phase, an ordinary confining phase in which monopoles condense, a 
further Coulomb phase, and then a sequence of obliquely confining phases separated 
by Coulomb phases. For large p the ordinary confining phase is absent, while at 
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Fig. 1. Typical phase diagram. The number of oblique confinement phases depends on 0, and the 
Coulomb phases (T) are absent for smallp. 

lower values of p the Coulomb phases may be absent. The number of obliquely 
confining phases depends dramatically on 0. If 0/2~r has the form 1/q  (q = integer) 
there is only one such phase (and, in fact, the model is self-dual). If  0/2~r = 2 / q  with 
q odd there are 2 such phases, and so on. If 0 / 2 ~  is irrational there are in principle 
an infinite number of phase transitions. 

In any given phase, particles whose electric and magnetic charges are the same 
multiple of those of a particle in the condensate, emerge as physical particles with 
only short-ranged forces between them. All other particles are confined by linear 
potentials. Thus, in an oblique confinement phase, both electric charges and mag- 
netic monopoles, the basic excitations of the theory, are confined, but bound states 
of them may exist as free particles. 

2. Definition of the model 

The abelian gauge theory we consider is described by a partition function 

Z = T r e x p - - - - Z ( A u q ~ - - A ~ q ~ , - - 2 ~ r S , ~ ) - + i p  n j ? , .  
2g 2 p 

(2.1) 

The first term is a sum over plaquettes, where the ~ are variables defined on the 
links, and the S,~ are integers defined on the plaquettes. Initially q~, is constrained to 
be in the interval ( -~r ,  + 7r). However, because of the periodicity of (2.1) we can 
extend its domain to the real fine. The link variables n ,  are integers defined on the 
links. When n,  is traced over, the effect is to discretize ep, in units of 27r/p. However, 
we can also add a term /~c52en2 to the action, which has the effect of controlling 
fluctuations in the n,.  To maintain gauge invariance of (2.1) the n,  must form closed 
loops, i.e. A n,  = 0. We can think of these loops as the (euclidean) world-lines of the 
Higgs particles. 

We have chosen the Villain form of the interaction because the monopoles can be 
identified explicitly. The monopole current is 

m ,  = ½e~xoA~S?, o . (2.2) 

A single monopole running, say, in the 4 direction can be represented by a 
configuration in which all the Sxo on plaquettes dual to those on the world-sheet 
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swept out by the Dirac string of the monopole are equal to unity, and all the other 
Sxo are zero. Note that the m, lie on the links of the dual lattice. We can also add a 
term I~MY~f m 2, giving a bare monopole mass. 

In the naive continuum limit, when monopoles are ignored, the rescaling ~r = agA, 
(where a is the lattice spacing) gives the standard lagrangian ¼fFZd4x, and the Higgs 
particles are then seen to have charges pg. 

The gauge field ~r may be completely integrated out of (2.1) to obtain a theory of 
interacting Higgs particles and monopoles: 

2vr2 
r p ! Z = T r e x p  g2 ~ r n r ( R ) G ( R - R ' ) m r ( R ' ) - ½ P a g 2 ~ n r ( r ) G ( r -  ) n . ( r )  

R,  R' r, r' 

+ ip R,~ • rn'( R )n~( r )Or"( R -- r ) ] " (2.3) 

Here G(R) is the 4-dimensional lattice Coulomb Green function. Or~ can be written 
as 

Or~( R -- r) = 27rer~x~Ux(U. A )-I  A~)G( R -- r ) .  (2.4) 

It is most easily visualized when, for example, m r represents a straight line in the 
3-direction, and n~ in the 4-direction. Then the final term in (2.3) depends only on 
the (1,2) coordinates of the charge and the monopole. It is, in fact, the angle which 
the vector r - R  makes with the Dirac string of the monopole, in the (1,2) plane. 
Thus, in general, Or~ changes by 27r whenever the electric charge crosses the 
world-sheet of the Dirac string of the monopole. This peculiar interaction is, in fact, 
rather elegant. 

Suppose that in general we have two dyons, one at R with electric and magnetic 
charges (q, h), and one at R'  with charges (q', h'). (These charges are pure numbers, 
expressed as multiples of the fundamental charges g and 2~r/g). According to (2.3), 
their contribution to the action is 

i [hq 'dr(R)d,(R' )Or~(R -- R') + h 'qd , (R ' )d~(R)Or~(R ' -  R)] ,  (2.5) 

where d r is the dyon current. Now Or , (R--R ' )  is symmetric in (R- -R ' ) ,  but is 
antisymmetric in/~ and v. Thus (2.5) may be written 

i( hq' - h' q)dr( R )d~( R')Or,( R - R') .  (2.6) 

However, Or~ is an angle, and so the partition function should not change when Or, 
is increased by 27r. So 

hq' - h' q = integer. (2.7) 
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In our units, this is the generalization [7] of the Dirac [8] quantization condition to 
particles carrying electric and magnetic charge. It is built into the lattice theory. Of 
course, the excitations in our modes (2.1) automatically satisfy this criterion. It was 
pointed out by Witten [4] that (2.7) allows monopoles to carry non-integer electric 
charge proportional to their magnetic charge. This actually occurs when there is a 
non-zero 0 angle. 

In order to discuss the effect of the 0-angle, we first consider the continuum limit 

f F~,pl,.d4x f 0__9__ )d4 . 
# OX ° 

(2.8) 

Suppose we have a static monopole at the origin: 

mu = m6~48 R,o. (2.9) 

Consider the contribution to (2.8) from a hypercube containing the origin. The field 
A 4 will be smooth over the interior of the cube, but the space components A t, A 2, A 3 
will be rapidly varying in space, but not imaginary time. Thus the term in (2.8) with 
u = 4 can be approximated by A4: 

A 0 0Aj ] 
(2.10) 

where the first integral is over the volume, and the second over the surface of a 
3-cube containing the origin. The second integral is of course just the flux of the 
B-field out of the cube, so it is proportional to m. 

Thus we see that the effect of the term FF  is simply to couple A, to the monopole 
current m r. There is a problem in defining this on the lattice however, since the 
fields q~, cc An, and the monopole current m,  are defined on different lattices, one 
being the dual of the other. 

We therefore include the effect of the 0-angle by adding to the action a term 

/p0 
27r ~ f (r - -  R)q~,(r)m~(R), (2.11) 

r,R 

where f ( r -  R) is short-ranged, and Y~R f ( r -  R ) =  1. The exact form o f f  should not 
affect the large-distance physics. Comparing with (2.1) we see that the effect of this 
term is to make m r behave as if it carried an electric current (O/2~r)m~. The fields ~, 
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may once again be integrated out, to obtain, instead of (2.3), 

2~r2 
Z=Trexp g2 ~ m~(R)G(R-R')m.(R') 

R,R' 

r,r' R,R'  

0 ' - R ' ) m u ( R ' ) )  × G(r- r')(n~(r') + ~ f ( r  

] 
+~ ~, m , (  R )n , (  r )(~u~( R -- r ) l . (2.12) 

R,r ] 

Note  that 0 drops out of  the last term, so that the partition function is still single 
valued. This is consistent with the observation of Witten [4] that a non-zero 0 angle 
gives charges consistent with the generalized Dirac condition. 

In what follows we shall replace f by a delta function and ignore the fact that n,  
and m~ lie on different lattices. This should not affect the large-distance physics. The 
partition function is then seen to be a periodic function of 0, since 0 ~ 0 + 2Tr may 
be compensated by a change n,  ~ n,  - m, .  Note  that this is no longer true if we add 
mass terms to (2.12). In a non-abelian theory, we would not have to put in Higgs 
particles, since the gluons themselves carry charge. Because of the periodicity we can 
restrict attention to the interval 0 ~< 0 ~< ~r. Under the parity operation, n~ ~ - n ~  but 
m,  ~ m, .  So the action is invariant under parity only at 0 = 0 or ~r. 
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Fig .  2. T h e  charge lattice. The angle a = t a n  1 ( 0 / 2 ~ r ) .  Two ellipses for different values of g are shown. 
Charges within the ellipse can condense. 
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The electric and magnetic charges of the excitations of the model may be plotted 
in a plane (fig. 2). They form a lattice, which is not rectilinear unless 0 is a multiple 
of 2~r. 

3. Analysis of the phase diagram 

3.1. D U A L I T Y  

When 0 = 0, it is well known that this model is self-dual [5]. This is apparent in 
(2.12). Under duality, 

g2 ~ 4¢t 2 / p 2 g 2  . (3.1) 

It turns out that the model is also self-dual when 2~r/0 is an integer, although in a 
different way. Suppose that 0/2Tr = 1/q. The action may be written symbolically as 

g2 m~Gmu + ~ n + q G n + q + ipm,®~nv. (3.2) 

Let 

m/z  _ - lp. 
n~ + (3.3) q q ' 

where l~ is an integer. We may label the points of the charge lattice by (n, l) instead 
of (n, m). Note that this does not work for arbitrary rational 0/2~r. (3.2) may then 
be written 

[ l p292 
2~r---~2 q2 | n + - - l ~ G l ~  -- ipl~O~vn ~. (3.4) 

, 

The change of sign in the last term is irrelevant. (3.4) is equivalent to (3.2) with 

g2 ~ 4~r2q2/p2g2. (3.5) 

The self-dual value of g2 is 27rq/p, and the phase diagram must be inversion 
symmetric about this point. Note that we get the conventional result if we take q -- 1 
and use periodicity in 0. 

3.2. F R E E  E N E R G Y  A R G U M E N T S  

In the U(1) theory, simple arguments have been used [9] to show that monopoles 
should condense at strong coupling. It is straightforward to extend to this problem. 
Consider a large loop of length L, carrying electric and magnetic charge (n + 
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(O/2~r)m, m). We can estimate its energy by taking only the terms in the action with 
r = r'. This gives 

(__2~'2 2 ( Om 2)] 
+ ½p2g2 n+ ~ 1  G(O)L. (3.6) g2 m 

On the other hand, its entropy is also proportional to L, roughly Lln7,  since at each 
step the loop can choose seven different directions. Thus long, tangled loops should 
condense in the vacuum if 

0 2 T)p<C, (3.7) 

where T=pga/2~r, and C = (ln7)/~rG(0). The value of C is, of course, not to be 
taken too seriously. We have neglected the long-range part of the force completely, 
assuming that it is screened by other loops. Note, however, that the phase diagram 
will depend on C/p, so lack of knowledge of C only affects the critical values of p. 
When 0 = 0, the criterion (3.7) suggests the existence of an intermediate Coulomb 
phase, where neither Higgs particles nor monopoles can condense, when p > C. Since 
such a phase is observed in Monte Carlo simulations [10] for p ~> 6, we can suppose 
that C is in this region. The two-dimensional model to be discussed later gives C = 4. 

When two or more condensates are possible, we choose the one with the lowest 
free energy, that is the smallest value of the left-hand side of (3.7). In a given 
direction away from the origin of the charge lattice, we have to consider only the 
points closest to the origin. It is not possible for two condensations (re, n) and 
(m', n') to happen simultaneously if m/n ~ m'/n'. If this were the case, the free 
energy, by (2.11), would contain a term 

ip(rnn'-- m'n) ~ O,~(R -- r). (3.8) 
R,r 

Since (9,, is an angle defined with respect to an arbitrary direction, the partition 
function would not be well-defined, or the theory would not be covariant at large 
distances. 

The criterion (3.7) defines the interior of an ellipse in the plane of the charge 
lattice. The ratio of its axes is T, and its area is ~rC/p. For p large, there will be no 
points of the charge lattice inside the ellipse besides the origin, unless T is either very 
large or very small. Thus at intermediate coupling, there will be a Coulomb phase. 
For small p, there will always be points inside the ellipse, and no Coulomb phase. 
These are the general features. We now consider some particular values of 0. 

(a) 0 = it. The charge lattice is shown in fig. 3. Only the points labelled H (the 
elementary Higgs particle), M (the elementary monopole) and O (a composite with 
n = - l ,  m = 2), together with their charge conjugates, are possible candidates for 
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condensates. The phase diagram for different values of p / C  is illustrated in fig. 4. 
The strong coupling phase is where O condenses. This is the example of oblique 
confinement quoted by 't Hooft. 

(b) 0 / 2 ~  = 1/N.  The qualitative picture does not change from case (a), only the 
various critical values of p / C .  The phase diagram remains self-dual. 

(c) 0/2~r = 2 /N ,  N odd. As an example we choose N - - 5 .  The charge lattice is 

shown in fig. 5. There are now two points O~ and 02 which may condense at 
different couplings, and give the possibility of two different obliquely confining 
phases. The phase diagram as we vary p is shown in fig. 6. 

Clearly one can investigate more complicated situations. If 0/2~r is rational, there 
will always be a point of the charge lattice with zero electric charge, as this will 
always condense at sufficiently strong coupling, although there may be many 
different oblique confining phases until this limit is reached. If 0/2~r is irrational, 
however, all states will have non-zero electric charge and thus will ultimately pass 
out of the ellipse. Thus in our approximation there will be an infinite sequence of 
obliquely confining phases as we pass to higher and higher values of g2. The 

discontinuous behavior in terms of 0 may raise concern in an attempt to renormalize 
the parameter  0. We comment that by adding a term tt2Yin2(i) to the action (2.12) 
one describes the Villain version of an abelian U(1) matter field coupled to a U(1) 
gauge theory in the presence of a 0 parameter. This mass term would suppress the 
infinity of phase transitions obtained for the Zp theory. 

In order to understand the properties of all these phases, we need to calculate 
Wilson loops. This calculation is carried out in the appendix. In a phase in which the 

0 

x x M 

x x H 

X X 

Fig. 3. Charge lattice for 0 = ~. 
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Fig. 4. Phase diagrams for 0 = ~r. 
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Fig. 6. Phase diagram for O ~v. 

charge (n, rn) condenses all particles which have quan tum numbers  (n ' ,  m')  not  in 

the condensate have Wilson loops decaying with an area law, so are confined. The 
string tension is proport ional  to ( m n ' - m ' n ) = ,  the 'distance'  of the particle away 

f rom the condensate on the charge lattice. Particles in the condensate have Wilson 
loops decaying with a perimeter law and so are unconfined. In fact they interact via 
short-ranged forces, whose inverse range is characterized by a finite mass scale. 

4. Two-dimensional model 

The above results depend rather crucially on the form of the left-hand side of 
(3.7). We now consider a related two-dimensional model  where the free energy 
arguments can be backed up by a renormalization group analysis. We construct  the 

model  f rom the 4D gauge theory by assuming that ~ ,  ~= vanish and ~3, (/)4 depend 
only on x 1, x 2. The parti t ion function for one slice x 3, x 4 = constant  in the absence 

of  the 0-angle is 

[ 2g  ~ ~, a 
(4.1) 
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where /~= 1,2 and a = 3,4. The fields q~,, may now be thought of as residing on the 
sites of the 2 D lattice, and the integer variables S,a on the links. The (3,4) labels 
have become internal symmetry indices, as is common in dimensional reduction. 

The model (4.1) corresponds to two decoupled Zp spin models, or clock models. 
The non-zero monopole currents 

m 3 = --Ai824 -~- A2S14 , (4.2) 

m 4 = A1323 -- A2S13 , (4.3) 

now represent vorticity. The vorticity of the ~3 field is m4, that of the ~4 field is 
- r n  3. The electric currents n3,n 4 correspond to what are sometimes called spin 
wave excitations of the clock models. 

The phase diagram of the Zp clock model is well understood [5, 1 1]. For p < 4 
there is a low temperature (weak coupling) phase where the spin wave operators gain 
an expectation value (they 'condense'). Unlike the gauge theory, the Zp symmetry is 
global and is spontaneously broken in this phase. Vortices are bound by a linear 
potential; that is, their correlations decay exponentially. The high temperature dual 
of this phase is one where the vortex interactions are screened and spin-spin 
correlations decay exponentially. For p > 4, there is an intermediate massless phase. 
Thus this model has may similarities with the 4D gauge theory. 

The fields q5 3, ~4 may be integrated out of (4.1) to obtain [1 1] 

Z = T r e x p  --;- ~ (m3(R)m3(R') +ma(R)m4(R ' ) ) ln (R-R ' )  
go R~-R' 

p292 
q- ~ E (F/3(r )F/3(r ' )  ~- F /4 (F )R4(F ' ) ) In (F - -  r ' )  

r~- r' 

+ip E (m3 (R)n 4 ( r ) - -m4 (R)n3 ( r ) ) e ( r -R )  
r .R  

{p2g2~ (n2(r) + n24(r)) qr2 ], -- -- - -  E (m2(R) + m2(R)) 
r 2g 2 R J 

(4.4) 

where we have used the asymptotic form - ( l / 2 ~ r ) l n  r for the 2D Coulomb Green 
function. The function ® ( r - R )  is the angle which the vector ( r - R )  makes with a 
fixed direction. 

When we add the 0-angle, it is actually possible to avoid the introduction of the 
arbitrary function f ( R - - r )  of (2.11), if we first modify the model so that ~4 is 
defined on the sites R of the dual lattice. Since m 4 is the vorticity for q~3, it is also 
defined on the dual lattice, so there is now no difficulty in writing down a purely 
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local interaction 

27r ~m3(r)qb(r) + ~ma(R)~a(R) " (4.5) 
r R 

Comparing with (4.1), we see that vortices of e? 3 couple as spin-wave excitations to 
e&, and vice versa. The Coulomb gas representation is now 

Z = T r e x p  r~r'~" m3(r)m3(r')ln(r-r') + ~ ~ m4(R)m4(R')ln(R-R') 
R~R' 

+~p292 r#r' ~ (n3(r )q-  -~m3(r))(n3(r')+ ~ m 3 ( r ' ) ) l n ( r - - r ' )  

p292 
q- ~ R~R" (//4( e )-~- ~-~m4( R ))(/ ' /4(R')  4;- ~ m 4 (  g ' ) ) l n (  R - R') 

q-iPr, R ~ (m3(r) / /4(R)--m4(R)/ /3(r))O(r-R)l  

~p2g2{~nZ(r)_r  ~R n24(R ) ) -  ~g2 ( ~r m~(r)+ ~m2(R R)). (4.6) 

For the energy to be finite, we impose the conditions ~ m  3 = Y~m 4 ----- ]~/'/3 = Y~n4 = 0. 
Note that if we had tried to add a 0-angle term to a single clock model, the final 

angular term would depend upon 0, and the partition function would not be single 
valued. We need the extra antisymmetry provided by the internal symmetry. 

The phase diagram of this model may be analysed in two ways. First, one can 
make simple free energy arguments following Kosterlitz and Thouless [12]. If the 
system has linear size L, the energy of a single excitation with quantum numbers 
(r/3 = n, m 3 = m, rt 4 = m 4 = O) is 

n ~ )2]ln L, [2@2m2q__~p292( + 0 m (4.7) 

while its entropy is - I n  L 2. The condensation of such objects will therefore be 
favored when 

~r 2 O m 2 --m2+½p2g2(n+-~ ) <2, (4.8) 
2g 2 

a result which is identical to (3.7) with C = 4. 
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Alternatively one may use a renormalization group argument to study the stability 
of the gaussian phase, following Jose et al. [9]. First one adds to the action of (3.5) a 

term 

~ (lnyn,,m,)~n3(r),n,~rn3(r),m,+ ~ ~ (lnYn, m,)~n4(R),n,~m,(R),m,. (4.9) 
r n',rn" R n'm' 

The new variables Yn,,, act as fugacities for charges (n, m), and serve to count them 
in the partition function. 

Because of total charge neutrality, the first terms in the power series development 

of Z in the Yn,,, are 

Z=l- l-2 ~] yr~2, mS d2ra 2 d2r'(rar')-(2~/g2)m2-(P2g2/2~)(n+°m/2~)2a 2 - -  q - . ' - ,  
n~m 

(4.10) 

where we have replaced sums by integrals, and been careful to introduce the lattice 
spacing a to be dimensionally correct. Under a rescaling a- - ,  ba ,  y , ,  m must rescale 
according to 

. l.(2--~rm2/g2+(p2g2/4~r)(n+O'rn/2~r)2) 
Y , , m  -"  Y~,m u (4.11) 

so that Z be unchanged. Thus, when the inequality (4.8) is satisfied, y,, m is relevant 
on the gaussian fixed line y,, , ,  = 0. Of course, this is only a local statement valid 
near the gaussian line, and we must assume that the flows are uninterrupted as we 
continue to Yn,m = 1. It is possible to write down the full renormalization group 
equations to O ( y 2 ) ,  but they are not very instructive. The main point is that the 
form of the criterion (4.8) is substantiated in this case by renormalization group 
arguments. Thus we expect this two-dimensional model to have the rich phase 
structure as indicated in the previous section for the gauge theory. It would be 
interesting to study these models further. One special case (p  = 2 , 0 = ~ r )  corre- 
sponds to the Ising representation of the F-model. Our results agree with the exact 
solution for this case [13]. 

5. Conclusions 

We have constructed abelian systems with a local gauge symmetry in four 
dimensions and a global symmetry in two dimensions. The phase structure in these 
models is enriched by adding a O-like parameter. In our formulation one easily 
detects that monopoles pick up a fractional electric charge in the presence of a 0 
parameter  as first pointed out by Witten. As a consequence we demonstrated using 
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renormalization group arguments that dyon condensation as well as oblique confine- 
ment does indeed occur in 2 dimensions. Applying cruder arguments we show that 
the phases suggested by 't Hooft  for SU(N)  gauge theories occurs also in 4- 
dimensions in the model discussed. The systems we study are all abelian, neverthe- 
less they are also boundaries of non-abelian systems coupled to Higgs fields. Thus 
the structure uncovered will also appear in non-abelian theories. 

We thank T. Banks and S. Yankielowicz for a useful conversation. E.R. wishes to 
thank W.A. Bardeen for many discussions on the subject of the parameter  0. One of 
us (JLC) thanks the Hebrew University of Jerusalem and the Weizmann Institute for 
hospitality while this work was carried out. This work was supported in part  by an 
Alfred P. Sloan Foundation Fellowship. 

Appendix 

The Wilson loop for a particle with quantum numbers (n', m') may be evaluated 
by replacing 

nr ( r ) - -*n , ( r )+Nr(r ) ,  m , ( R ) - - * m , ( R ) + M u ( R )  (A.1) 

in (2.12), where (Nr(r), Mr(r)) = (n', m') on a link of the loop, and zero elsewhere. If 
we call this modified partition function Z{Nr, Mr}, the Wilson loop is 

W(C)  = Z{Nr, Mr}/Z{O,O } . (A.2) 

In what follows, we introduce the electric charge current q, = n, + (O/2~)m r, and 
similarly define Q~=Nr+(O/2~r)M r. Suppose now that the charge (q, m) con- 
denses, where q / m  = tana.  The value of (n, m) in the condensate will dominate the 
partition sum. Writing for those values q = ~ s i n a ,  m = ~ c o s a ,  the sum over the 
allowed values of q, m may be replaced by an integral over (, if we use the Poisson 
sum formula: 

= ~ e x p  27ri~ s s i n a -  cosa  + t  
t l , m  s , l  oQ 

(A.3) 

We have introduced by weight factor e -x~2 because we expect, under renormaliza- 
tion, a given particle to gain a self-energy proportional to the square of its charge. 
We now consider only the term with s = t = 0. A similar calculation has been carried 
out by Pelcovits [14] for the spin-spin correlation function in the high temperature 
phase of the X Y  model. In that case, terms we neglect correspond to fluctuations of 
the string connecting the two spins. They lead to the prefactor in his result 
R 1/2e-~R. In our case, non-zero s, t correspond to fluctuations of the Wilson 
surface, and lead to a non-leading Coulomb term in the potential [15]. 
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With these approximations Z takes the form 

Z { N . , M ~ }  = f  H d~u(r)e-X'.  (r): 

_ 2f__22 
Xexp g2 2 ( ~ . ( r ) c o s a + M . ( r ) )  

r ,  r r 

X G(r-  r')(~(r')cos a + M.(r')) 

_ ½p2g2 2 (~tt(r)sina + Q~(r ) )G(r  - r ' ) ( f~(r ' )s in a + Q~(r')) 
r ,  r ~ 

~- ip r,Er' (~. ( r )cos  a + M.( r ) ) ( ~ (  r')sina + Q~( r') )O~( r -  r ' )J .  

This is a gaussian integral over the f~(r). Write 

M~( r ) = m'S,( r ), Q,( r ) = q'Ju( r ). 

(A.4) 

(A.5) 

The terms in (A.4) which do not involve ~,(r) are Coulomb interactions between the 
J,(4). They lead to a perimeter dependence. The integration over the ~,(r) leads to a 
result which has the symbolic form, in momentum space, 

1 
_ _ , .  2 A ] °xpI -   2 q,coso ms,no, [ ~ k  2 k 2 t t ] 

(A.6) 

2qr2 2 
A = --~-COS a + ½pag2sin2a. (A.7) 

where 

We have used the fact that G ~ 1 /k  2 in momentum space. The first term in (A.6) 
behaves like 1 / k  2 as k --, 0, giving again a perimeter law. The second term, however, 
is proportional to the area of the loop. To see this, suppose J, represent static 
charges a distance L apart: 

J~(r) = •413(x,) - 8(x,  -- L ) ]8(Xz)8(x3) .  (A.8) 
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We then get a contribution in (A.6) with I,= 2,3. The Fourier transform of 
(A/k2+~) -1 is short-ranged. For L>>(~/A) 1/2 we may replace it by a nearest- 
neighbor interaction. Substituting in (A.6) we obtain for u = 2 

p2(q'cosa-m'sina) 2 • (u(R)-  u(R'))  2. (A.9) 
(R,R) 

Here u(R) is the angular variable following eq. (2.4). R and R' lie in the (1,3) plane. 
u(R) has a discontinuity of 21r across the line joining the two sources. Thus (A.9) is 
proportional to the length of the string joining them. The string tension is propor- 
tional to ( q ' c o s a -  m'sina) 2, so it vanishes when q'/m'= tanc~, i.e. the charge lies 
in the condensate. In that case we must consider all the terms in (A.4). Writing 
Q~, = J~,(r)sint~, M~ =J~(r)cosa, (A.4) simplifies to 

(A.IO) 

The integration is straightforward, and leads to 

exp[ (A.11) 

This gives a perimeter law. The potential between two charges in the condensate is 
e Mr where M = (A/?O V2, a short-range force. 

References 

[1] G. 't Hooft, Nucl. Phys. B190[FS3] (1981) 455 
[2] S. Coleman, Ann. of Phys. 101 (1976) 239 
[3] C. Callen, R. Dashen and D. Gross, Phys. Rev. D20 (1979) 3279 
[4] E. Witten, Phys. Lett. 86B (1979) 283 
[5] S. Elitzur, R. Pearson and J. Shigemitsu, Phys. Rev. D19 (1979) 3698; 

D. Horn, M. Weinstein and S. Yankielowicz, Phys. Rev. D19 (1979) 3715; 
A. Guth, A. Ukawa and P. Windey, Phys. Rev. D21 (1980) 1013 

[6] M. Peskim Cornell preprint CLNS-395 (1978) 
[7] J. Schwinger, Phys. Rev. 144 (1966) 1087, 173 (1968) 1536; 

D. Zwanziger, Phys. Rev. 176 (1968) 1480, 1489 
[8] P.A.M. Dirac, Proc. Roy. Soc. A133 (1931) 60 
[9] T. Banks, R. Myerson and J. Kogut, Nucl. Phys. B129 (1977) 493; 

R. Savit, Phys. Rev. Lett. 39 (1977) 55 
[10] M. Creutz, L. Jacobs and C. Rebbi, Phys. Rev. Lett. 42 (1979) 1390; Phys. Rev. D20 (1979) 1915 
[I 1] J. Jose, L. Kadanoff, S. Kirkpatrick and D. Nelson, Phys. Rev. B16 (1977) 1217 
[12] J. Kosterlitz and D. Thouless, J. de Phys. C6 (1973) 1181 
[13] E.H. Lieb and F.Y. Wu, in Phase transitions and critical phenomena, ed. C. Domb and M.S. Green 

(Academic Press, 1972) vol. I, p. 331. 
[14] R.A. PelcovJts, J. Phys. A14 (1981) 1693 
[15] M. L0scher, K. Symanzik and P. Weisz, Nucl. Phys. B173 (1980) 365 


