Errata and comments for the book:

String Theory in a Nutshell, second edition

by Elias Kiritsis

August 24, 2022

Contents

1	Chapter 1: Introduction	3
2	Chapter 2: Classical String Theory Section 2.1: The point particle	4 4
3	Chapter 3: Quantization of Bosonic Strings Section 3.3: Spectrum of the bosonic string	5 5
4	Chapter 4: Conformal Field Theory Section 4.2: Conformally Invariant Field Theory Section 4.12: Free fermions and O(N) affine symmetry Section 4.14: Scalars with background charge Section 4.16.2: Free Massless Fermions on the disk	6 6 6 7
5	Chapter 5: Scattering Amplitudes and Vertex Operators Section 5.2.2: The open String	8 8
6	Chapter 6: Strings in Background Fields	9
7	Chapter 7: Superstrings and Supersymmetry	10
8	Chapter 8: D-branes	11
9	Chapter 9: Compactification and Supersymmetry breaking	12
10	Chapter 10: Loop Corrections to String Effective Couplings	13
11	Chapter 11: Duality Connections and Non-perturbative Effects	14
12	Chapter 12: Compactifications with Fluxes	15
13	Chapter 13: Black Holes and Entropy in String Theory	16
14	Chapter 14: The Bulk/Boundary (Holographic) Correspondence	17
15	Chapter 15: Applications of the Holographic Correspondence	18
16	Chapter 16: String Theory and Matrix Models	19
Aj	ppendix A: Two-dimensional Complex Geometry	20
Aj	ppendix B: Differential Forms	21
Aj	ppendix C: Conformal Transformations and Curvature	22
Aj	ppendix D: Theta and Other Elliptic Functions	23
A	ppendix E: Toroidal lattice sums	24

Appendix F: Toroidal Kaluza-Klein reduction	25
Appendix G: The Reissner-Nordström Black Hole	26
Appendix H: Electric-Magnetic Duality in $D = 4$	27
Appendix I: Supersymmetric Actions in Ten and Eleven Dimensions	28
Appendix J: $\mathcal{N}=1_4, 2_4$, Four-Dimensional Supergravity Coupled to Matter	29
Appendix K: BPS Multiplets in Four Dimensions	30
Appendix L: Geometry of Anti-de Sitter Space	31

1 Chapter 1: Introduction

2 Chapter 2: Classical String Theory

Section 2.1: The point particle

 In equations (2.1.25)-(2.1.27) a factor of π is missing. The equations should read: The solution is

$$\psi_n(\tau) = C_n \sin(n\pi\tau) \quad , \quad \lambda_n = \frac{n^2 \pi^2}{L^2} \quad , \quad n = 1, 2, \dots$$
 (2.1.25)

and therefore

$$\det\left(-\frac{1}{L^2}\partial_{\tau}^2\right) = \prod_{n=1}^{\infty} \frac{n^2 \pi^2}{L^2}.$$
(2.1.26)

Obviously the determinant is infinite and we have to regularize it. We shall use $\zeta\text{-function regularization in which}^1$

$$\prod_{n=1}^{\infty} (L/\pi)^{-2} = (L/\pi)^{-2\zeta(0)} = \frac{L}{\pi} \quad , \quad \prod_{n=1}^{\infty} n^a = e^{-a\zeta'(0)} = (2\pi)^{a/2} \,. \tag{2.1.27}$$

The propagator in (2.1.28) is not affected by this as we adjusted the normalization. Thanks to Xinyu Zhang who pointed out the error.

3 Chapter 3: Quantization of Bosonic Strings

Section 3.3: Spectrum of the bosonic string

• Below equation (3.3.2) the order should change and read: These states can be interpreted as an antisymmetric tensor B_{ij} , a spin-2 particle G_{ij} (graviton) and a scalar Φ .

Thanks to Xinyu Zhang who pointed out the error.

4 Chapter 4: Conformal Field Theory

Section 4.2: Conformally Invariant Field Theory

• Equation (4.2.4) should read

 $\delta_{\epsilon,\bar{\epsilon}}\Phi(z,\bar{z}) \equiv \Phi(z,\bar{z}) - \Phi'(z,\bar{z}) = \left[(\Delta\partial\epsilon + \epsilon\partial) + (\bar{\Delta}\bar{\partial}\bar{\epsilon} + \bar{\epsilon}\bar{\partial}) \right] \Phi(z,\bar{z}), \quad (4.2.4)$

Thanks to Ching-Chia, Hsu who pointed out the error.

Section 4.12: Free fermions and O(N) affine symmetry

- Below (4.12.1) an index should raised It should read Clearly, this model exhibits a global O(N) symmetry, $\psi^i \to \Omega_{ij} \psi^j$, $\Omega^T \Omega = 1$, which leads to the chirally conserved Hermitian $(J_m^{ij\dagger} = J_{-m}^{ij})$ currents
- Just above equation (4.12.33)the line should read:

Therefore, we obtain the spinor $S = (1 + \gamma^{N+1})/2 \hat{S}$ and the conjugate spinor $C = (1 - \gamma^{N+1})/2 \hat{S}$.

Thanks to Xinyu Zhang who pointed out the error.

Section 4.14: Scalars with background charge

• Equation (4.14.3) should read:

$$\delta R^{(2)} = \left[R^{(2)}{}_{\mu\nu} + g_{\mu\nu} \Box - \nabla_{\mu} \nabla_{\nu} \right] \delta g^{\mu\nu} , \qquad (4.14.3)$$

Thanks to Xinyu Zhang who pointed out the error.

Section 4.16.2: Free Massless Fermions on the disk

• Equation (4.16.11) should read

$$G + \bar{G}|_{\sigma=0} = 0$$
 , $G - \bar{G}|_{\sigma=\pi} = 0$, NS sector . (4.16.11)

Thanks to Xinyu Zhang who pointed out the error.

5 Chapter 5: Scattering Amplitudes and Vertex Operators

Section 5.2.2: The open String

• Equation (5.2.9) should be replaced by the following equation and text

$$\langle \prod_{i=1}^{m} : e^{ip_i \cdot X(z_i, \bar{z}_i)} : \prod_{I=1}^{n} : e^{iq_I \cdot X(w_I)} : \rangle_{D_2} = (2\pi)^{26} \delta^{(26)} \left(\sum_i p_i + \sum_I q_I \right) \times$$
(5.2.9)

$$\times \prod_{i

$$\times \prod_{I$$$$

where w_I are coordinates on the boundary (the real line).

The extra factor in red above comes from the incomplete normal-ordering of the scalar fields with NN boundary conditions. For all surfaces we define the normal order product as

$$: X^{\mu}(z)X^{\nu}(z) :\equiv \lim_{\epsilon \to 0} \left[X^{\mu}(z+\epsilon)X^{\nu}(z) + \frac{\ell_s^2}{2}\eta^{\mu\nu} \log |\epsilon|^2 \right]$$

so that on the sphere

$$\langle X^{\mu}(z)X^{\nu}(z) \rangle = 0$$

On the disk however with, for example, NN boundary conditions, using the NN propagator

$$\langle X^{\mu}(z,\bar{z})X^{\nu}(w,\bar{w})\rangle_{D_2} = -\frac{\ell_s^2}{2}\eta^{\mu\nu} \left(\log|z-w|^2 + \log|z-\bar{w}|^2\right)$$
 (5.0.1)

we obtain

$$\langle : X^{\mu}(z)X^{\nu}(z) : \rangle = -\frac{\ell_s^2}{2}\eta^{\mu\nu}\log|z-\bar{z}|^2$$

Thanks to Pascal Anastasopoulos for bringing this to my attention.

6 Chapter 6: Strings in Background Fields

7 Chapter 7: Superstrings and Supersymmetry

8 Chapter 8: D-branes

9 Chapter 9: Compactification and Supersymmetry breaking 10 Chapter 10: Loop Corrections to String Effective Couplings 11 Chapter 11: Duality Connections and Non-perturbative Effects

12 Chapter 12: Compactifications with Fluxes

13 Chapter 13: Black Holes and Entropy in String Theory 14 Chapter 14: The Bulk/Boundary (Holographic) Correspondence 15 Chapter 15: Applications of the Holographic Correspondence

16 Chapter 16: String Theory and Matrix Models

Appendix A: Two-dimensional Complex Geometry

Appendix B: Differential Forms

Appendix C: Conformal Transformations and Curvature

Appendix D: Theta and Other Elliptic Functions

Appendix E: Toroidal lattice sums

Appendix F: Toroidal Kaluza-Klein reduction

Appendix G: The Reissner-Nordström Black Hole

Appendix H: Electric-Magnetic Duality in D = 4

Appendix I: Supersymmetric Actions in Ten and Eleven Dimensions Appendix J: $\mathcal{N}=\mathbf{1}_4,\mathbf{2}_4$, Four-Dimensional Supergravity Coupled to Matter Appendix K: BPS Multiplets in Four Dimensions

Appendix L: Geometry of Anti-de Sitter Space