## Errata and comments for the book:

# String Theory in a Nutshell, second edition 

by Elias Kiritsis

August 24, 2022

## Contents

1 Chapter 1: Introduction ..... 3
2 Chapter 2: Classical String Theory ..... 4
Section 2.1: The point particle ..... 4
3 Chapter 3: Quantization of Bosonic Strings ..... 5
Section 3.3: Spectrum of the bosonic string ..... 5
4 Chapter 4: Conformal Field Theory ..... 6
Section 4.2: Conformally Invariant Field Theory ..... 6
Section 4.12: Free fermions and O(N) affine symmetry ..... 6
Section 4.14: Scalars with background charge ..... 6
Section 4.16.2: Free Massless Fermions on the disk ..... 7
5 Chapter 5: Scattering Amplitudes and Vertex Operators ..... 8
Section 5.2.2: The open String ..... 8
6 Chapter 6: Strings in Background Fields ..... 9
7 Chapter 7: Superstrings and Supersymmetry ..... 10
8 Chapter 8: D-branes ..... 11
9 Chapter 9: Compactification and Supersymmetry breaking ..... 12
10 Chapter 10: Loop Corrections to String Effective Couplings ..... 13
11 Chapter 11: Duality Connections and Non-perturbative Effects ..... 14
12 Chapter 12: Compactifications with Fluxes ..... 15
13 Chapter 13: Black Holes and Entropy in String Theory ..... 16
14 Chapter 14: The Bulk/Boundary (Holographic) Correspondence ..... 17
15 Chapter 15: Applications of the Holographic Correspondence ..... 18
16 Chapter 16: String Theory and Matrix Models ..... 19
Appendix A: Two-dimensional Complex Geometry ..... 20
Appendix B: Differential Forms ..... 21
Appendix C: Conformal Transformations and Curvature ..... 22
Appendix D: Theta and Other Elliptic Functions ..... 23
Appendix E: Toroidal lattice sums ..... 24
Appendix F: Toroidal Kaluza-Klein reduction ..... 25
Appendix G: The Reissner-Nordström Black Hole ..... 26
Appendix H: Electric-Magnetic Duality in $D=4$ ..... 27
Appendix I: Supersymmetric Actions in Ten and Eleven Dimensions ..... 28
Appendix J: $\mathcal{N}=1_{4}, 2_{4}$, Four-Dimensional Supergravity Coupled to Mat- ter ..... 29
Appendix K: BPS Multiplets in Four Dimensions ..... 30
Appendix L: Geometry of Anti-de Sitter Space ..... 31

1 Chapter 1: Introduction

## 2 Chapter 2: Classical String Theory

## Section 2.1: The point particle

- In equations (2.1.25)-(2.1.27) a factor of $\pi$ is missing. The equations should read: The solution is

$$
\begin{equation*}
\psi_{n}(\tau)=C_{n} \sin (n \pi \tau) \quad, \quad \lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} \quad, \quad n=1,2, \ldots \tag{2.1.25}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\operatorname{det}\left(-\frac{1}{L^{2}} \partial_{\tau}^{2}\right)=\prod_{n=1}^{\infty} \frac{n^{2} \pi^{2}}{L^{2}} \tag{2.1.26}
\end{equation*}
$$

Obviously the determinant is infinite and we have to regularize it. We shall use $\zeta$-function regularization in which ${ }^{1}$

$$
\begin{equation*}
\prod_{n=1}^{\infty}(L / \pi)^{-2}=(L / \pi)^{-2 \zeta(0)}=\frac{L}{\pi} \quad, \quad \prod_{n=1}^{\infty} n^{a}=e^{-a \zeta^{\prime}(0)}=(2 \pi)^{a / 2} \tag{2.1.27}
\end{equation*}
$$

The propagator in (2.1.28) is not affected by this as we adjusted the normalization. Thanks to Xinyu Zhang who pointed out the error.

[^0]
## 3 Chapter 3: Quantization of Bosonic Strings Section 3.3: Spectrum of the bosonic string

- Below equation (3.3.2) the order should change and read:

These states can be interpreted as an antisymmetric tensor $B_{i j}$, a spin-2 particle $G_{i j}$ (graviton) and a scalar $\Phi$.
Thanks to Xinyu Zhang who pointed out the error.

## 4 Chapter 4: Conformal Field Theory

## Section 4.2: Conformally Invariant Field Theory

- Equation (4.2.4) should read

$$
\begin{equation*}
\delta_{\epsilon, \bar{\epsilon}} \Phi(z, \bar{z}) \equiv \Phi(z, \bar{z})-\Phi^{\prime}(z, \bar{z})=[(\Delta \partial \epsilon+\epsilon \partial)+(\bar{\Delta} \bar{\partial} \bar{\epsilon}+\bar{\epsilon} \bar{\partial})] \Phi(z, \bar{z}), \tag{4.2.4}
\end{equation*}
$$

Thanks to Ching-Chia, Hsu who pointed out the error.

## Section 4.12: Free fermions and $\mathrm{O}(\mathrm{N})$ affine symmetry

- Below (4.12.1) an index should raised It should read

Clearly, this model exhibits a global $\mathrm{O}(\mathrm{N})$ symmetry, $\psi^{i} \rightarrow \Omega_{i j} \psi^{j}, \Omega^{T} \Omega=1$, which leads to the chirally conserved Hermitian $\left(J_{m}^{i j \dagger}=J_{-m}^{i j}\right)$ currents

- Just above equation (4.12.33)the line should read:

Therefore, we obtain the spinor $S=\left(1+\gamma^{\mathrm{N}+1}\right) / 2 \hat{S}$ and the conjugate spinor $C=\left(1-\gamma^{\mathrm{N}+1}\right) / 2 \hat{S}$.
Thanks to Xinyu Zhang who pointed out the error.

## Section 4.14: Scalars with background charge

- Equation (4.14.3) should read:

$$
\begin{equation*}
\delta R^{(2)}=\left[R^{(2)}{ }_{\mu \nu}+g_{\mu \nu} \square-\nabla_{\mu} \nabla_{\nu}\right] \delta g^{\mu \nu}, \tag{4.14.3}
\end{equation*}
$$

Thanks to Xinyu Zhang who pointed out the error.

## Section 4.16.2: Free Massless Fermions on the disk

- Equation (4.16.11) should read

$$
\begin{equation*}
G+\left.\bar{G}\right|_{\sigma=0}=0 \quad, \quad G-\left.\bar{G}\right|_{\sigma=\pi}=0 \quad, \quad \text { NS } \quad \text { sector } . \tag{4.16.11}
\end{equation*}
$$

Thanks to Xinyu Zhang who pointed out the error.

## 5 Chapter 5: Scattering Amplitudes and Vertex Operators

## Section 5.2.2: The open String

- Equation (5.2.9) should be replaced by the following equation and text

$$
\begin{align*}
\left\langle\prod_{i=1}^{m}: e^{i p_{i} \cdot X\left(z_{i}, \bar{z}_{i}\right)}\right. & \left.: \prod_{I=1}^{n}: e^{i q_{I} \cdot X\left(w_{I}\right)}:\right\rangle_{D_{2}}=(2 \pi)^{26} \delta^{(26)}\left(\sum_{i} p_{i}+\sum_{I} q_{I}\right) \times  \tag{5.2.9}\\
& \times \prod_{i<j}^{m}\left|\left(z_{i}-z_{j}\right)\left(z_{i}-\bar{z}_{j}\right)\right|^{\ell_{s}^{2} p_{i} \cdot p_{j}} \prod_{i=1}^{m}\left|\left(z_{i}-\bar{z}_{i}\right)\right|^{\ell_{s}^{2} p_{i}^{2}} \times \\
& \times \prod_{I<J}^{n}\left|w_{I}-w_{J}\right|^{2 \ell_{s}^{2} q_{I} \cdot q_{J}} \prod_{I, i}\left|w_{I}-z_{i}\right|^{\ell_{s}^{2} q_{I} \cdot p_{i}}\left|w_{I}-\bar{z}_{i}\right|^{\ell_{s}^{2} q_{I} \cdot p_{i}}
\end{align*}
$$

where $w_{I}$ are coordinates on the boundary (the real line).
The extra factor in red above comes from the incomplete normal-ordering of the scalar fields with NN boundary conditions. For all surfaces we define the normal order product as

$$
: X^{\mu}(z) X^{\nu}(z): \equiv \lim _{\epsilon \rightarrow 0}\left[X^{\mu}(z+\epsilon) X^{\nu}(z)+\frac{\ell_{s}^{2}}{2} \eta^{\mu \nu} \log |\epsilon|^{2}\right]
$$

so that on the sphere

$$
\left\langle: X^{\mu}(z) X^{\nu}(z):\right\rangle=0
$$

On the disk however with, for example, NN boundary conditions, using the NN propagator

$$
\begin{equation*}
\left\langle X^{\mu}(z, \bar{z}) X^{\nu}(w, \bar{w})\right\rangle_{D_{2}}=-\frac{\ell_{s}^{2}}{2} \eta^{\mu \nu}\left(\log |z-w|^{2}+\log |z-\bar{w}|^{2}\right) \tag{5.0.1}
\end{equation*}
$$

we obtain

$$
\left\langle: X^{\mu}(z) X^{\nu}(z):\right\rangle=-\frac{\ell_{s}^{2}}{2} \eta^{\mu \nu} \log |z-\bar{z}|^{2}
$$

Thanks to Pascal Anastasopoulos for bringing this to my attention.

6 Chapter 6: Strings in Background Fields

7 Chapter 7: Superstrings and Supersymmetry

8 Chapter 8: D-branes

9 Chapter 9: Compactification and Supersymmetry breaking

## 10 Chapter 10: Loop Corrections to String Effective Couplings

## 11 Chapter 11: Duality Connections and Non-perturbative Effects

## 12 Chapter 12: Compactifications with Fluxes

13 Chapter 13: Black Holes and Entropy in String Theory

## 14 Chapter 14: The Bulk/Boundary (Holographic) Correspondence

## 15 Chapter 15: Applications of the Holographic Correspondence

## 16 Chapter 16: String Theory and Matrix Models

# Appendix A: Two-dimensional Complex Geometry 

## Appendix B: Differential Forms

Appendix C: Conformal Transformations and Curvature

## Appendix D: Theta and Other Elliptic Functions

## Appendix E: Toroidal lattice sums

# Appendix F: Toroidal Kaluza-Klein reduction 

Appendix G: The Reissner-Nordström Black Hole

Appendix H: Electric-Magnetic Duality in $D=4$

Appendix I: Supersymmetric Actions in Ten and Eleven Dimensions

Appendix J: $\mathcal{N}=1_{4}, \mathbf{2}_{4}$, Four-Dimensional Supergravity Coupled to Matter

## Appendix K: BPS Multiplets in Four Dimensions

Appendix L: Geometry of Anti-de Sitter Space


[^0]:    ${ }^{1}$ The Riemann $\zeta$-function is defined as $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$.

